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1 General description of sdrflow

1.1 What is sdrflow?
Sdrflow is a development framework, which could be used to develop signal processing applications
for SDR and other purposes. When I started to develop the framework my major goal was to have a 
system which let me concentrate on writing algorithms and let me forget to deal with the glue code 
necessary to run the algorithms. It has the following features:

• Component based, and it uses two type of components

◦ primitive components written in C language

◦ composite components constructed from primitives and other composite components 

with the sdrflow language.

• The component system is hierarchical with fairly deep hierarchy. The top level component 

of an application is the application itself.

• The programming model used by the framework is the hierarchical synchronous data flow 

model.

• Main parts of the framework:

◦ the sdrflow language for constructing composite components

◦ a compiler and an assembler for compiling composites into binary code

◦ a runtime application for running the data flows. The runtime application is lightweight. 

It could be make run on small, embedded processors, like the ARM Cortex M4.

• The currently published framework runs only on 64 bit Linux systems (x86 or ARM) , but 
it implemented in such a way, that in the next release will be able to run on 32 bit Linux 
systems, and the runtime portion will be adapted for 32 bit ARM processors without any 
operating system.

The framework is an open source software. It is licensed under GNU GPL 3 or any later versions. It 
is published on https://github.com/ha5ft/sdrflow.

1.2 The component architecture
The framework uses coarse-grained components. Due to this fact the efficiency of the glue code is 
not critical. This simplifies the code generation and allows the use of a virtual machine to run the 
glue code.

There are two type of components in the framework.:

• We have primitives which are written in C language and 

• we have composites which are constructed from primitives and other composites. 

The component system is hierarchical and the framework keeps this hierarchy even at runtime.
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I have developed a special language, the sdrflow language for the construction of the composites. In
the current release the primitive components

• could be loaded dynamically or

• could be embedded statically

into the runtime system. 

The composite code is loaded dynamically in the current release. In the next release the static 
embedding of the composite code will be possible. This is necessary to run en application on an 
embedded processor without operating system and file system.

1.3 The model of computation
The framework is based on the synchronous data flow model and not on the dynamic data flow 
model used in gnu radio or Photos SDR. The synchronous model has some advantages.

• You could precompute the execution schedule. This simplifies the runtime system.

• It enables you the explicit use of feedback loops, which is not possible in the other systems.

I have extended the basic synchronous model. The extensions increase the usability of the model. 
The most important extensions are:

• the hierarchical description of the system,

• the hierarchical scheduling of the execution,

• the one to many type of connection between the components,

• the explicit use of control parameters in the model,

• separate data flow for computing parameters.

In the next release further extensions will come, like

• a new composite type which conditionally execute it’s components,

• a new composite type which implement a  C like switch,

• a new composite type which could iterate over a set of signals.

These extensions are important for creating a full featured SDR application.

1.4 The sdrflow language and the compiler
The sdrflow language is a declarative type language. It is used the describe the composite 
components. Using the language you only have to declare:

• the components you like to use,

• the instances of the components,

• the signals which connect the components,
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• and the topology of the composite, which means how the components are connected by the 
signals.

To have a feeling here is a sample composite declaration:

use P1
use C1
composite M1
   context
      input     float[5] i1[]
      output    float[5] o1[]
      parameter int      p1
   end
   signals
      stream    float[5] s1[]
      const     int      c1 273
   end
   actors
      primitive  P1  a1
      composite  C1  a2
      primitive  A7  a7
   end
   topology
      a1.i1  <<  i1
      a1.o1  >>  s1
      a1.p1  <<  p1
      a2.i1  <2< s1
      a2.p1  <<  c1
      a2.o1  >>  o1
   end
   schedule
      auto  a1
   end
end

The framework uses a special compiler to translate the composite description into runnable code. 
The code generated by the compiler runs on a virtual machine.

The language is text based. There is no plan to create a graphical language.

Supported platforms

• The current release of the framework supports 64 bit Linux systems only. 

• In the next release support for 32 bit Linux systems and 32 bit ARM processors without any 
operating system will come.

1.5 The development process
In the development process you are recommended to take the following steps:

• Decompose your signal processing systems into primitive and composite components.
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• Write the primitive components in C language and compile them with the gcc compiler into 
a shared library.

• Write the composite components in the sdrflow language and compile them with the 
framework’s compiler into a binary code.

• Run the top level composite with the framework’s runtime application.

In the development process you are encouraged to take a step by step approach. You should use test 
composites to test your primitives and composites.

In the next releases some instrumentation (oscilloscope, signal generator, spectrum 
analyzer, etc.) will come. With those you could test the system similarly the labor tests of 
the analog systems.

Pic. 1. This picture shows the development process
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2 The theoretical background of the framework
In this part of the user guide I briefly present you the terminology used in connection of data flow 
systems and some of the theories behind the implementation of my framework. 

2.1 The data flow paradigm
In the data flow paradigm we split our program into 

• algorithms which do the data processing and 

• data management components which manage the data the algorithms are working on. 

There are no other code components to deal with.  The algorithms will execute whenever they have 
enough input data. This kind of execution of the algorithms will provide the system functionality. 

To define and specify a data flow we should only describe

• the connection between the algorithms and 

• the data consuming and producing behavior of the algorithms. 

For the description of the system we use a directed graph. The algorithms usually called actors and 
the data management components called signals.

Fig. 2. On this figure a data flow graph is shown. The nodes represent the actors and the edges 
represent the signals. At the ends of the edges we denotes how many data an actor consumes or 
produces. for example actor n3 consumes f data elements from signal e2 and produces g data 
elements to signal e3. The nodes are denoted with the actors names and the edges are denoted with 
the signals names. On the edges we could note what delays we use in the data transfer. On the 
figure signal e2 has a delay of n and signal e1 has a delay of m.

2.2 Actors
The instances of the algorithms usually called actors. They are the nodes of the directed graph 
representing the data flow system. They do atomic execution of their algorithms. This execution is 
called firing. 

They behavior is specified by how many data they consume and produce during a firing. If the 
production and consumption behavior of an actor is fixed the actor called synchronous. 
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Fig. 3. The figure above shows when an actor is executed and it is not executed. The number at the 
actor side of the edge shows how many data the actors consume or produce during an execution. 
The numbers in square brackets shows how many data are stored in the signals. On the left side of 
the figure the actor a1 could not execute because the upper input signal has only 2 data elements 
and the actor would need 3 data element for execution. On the right side of the figure the actor has 
enough data elements at its input for the execution.

2.3 Signals
The instances of the data management components usually called signals. They are the edges of the 
directed graph. They behave like FIFO buffers with unlimited storage capacity. 

In the original model they have a single source and a single destination actor. However I have 
extended the basic data flow model to allow multiple destination connections. 

A signal may have delay. The delay is simple the data elements initially placed in the signal’s 
buffer. Delays some times essential part of the system, because the the signals really delayed. But 
the delays are useful for solving the problem caused by feedback loops in a data flow system. Using
some delays on the feedback signal the system will be schedulable.

I have extended the original signal model of the synchronous data flow graphs. I have introduced 
three class of signals. The original, FIFO like signal is called stream in my model. There are two 
more signal classes: the variables a the constants. The variable acts like the variables in the C 
language and the constants are like constants in C.

If an actor reads the stream in every read it gets a new data elements because the stream represents a
series of data elements. In contrast to this if an actor reads a variable or constant it always reads the 
same data element.

Variables and constants could be used for control parameters in the system.
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When computing the execution schedule we do not have to take into account variables and 
constants. They existence have no effect on the schedule of the system.

The data elements of the signals have types. The framework uses the data types of the C language.

The data elements of the signals are scalars or fixed length vectors of the scalar types.

The stream theoretically consists of an unlimited number of data elements. In practice a stream in 
the data flow has finite number of data elements. This could be imagined as a sliding window on the
series of infinite data elements of the stream. The variables and constants always have finite number
of data elements.

Fig. 4. On this figure you could see how the multi destination edge is transformed into two separate
edges in order to have a regular directed graph. 

2.4 Synchronous data flow graph
Two actor are said to be connected if a stream class signal connects them. A graph fully connected if
we could navigate from any actors to any other actors through stream class signals.

The graph representing the data flow need not be fully connected. They could have several 
connected subgraphs. To determine the connected subgraphs of the system only the stream class 
signals have to take into account. So in a connected subgraph you could navigate between any two 
actors through streams.

If we use variables and constants  we could have actors which are connected only by variables and 
constants or are standalone actors. These actors form a virtual subgraph, which is scheduled 
differently from the connected subgraphs. It is important, that in this virtual subgraph loops are not 
allowed. This subgraph usually used to make some computation on the parameters.

If all the actors in the graph are synchronous the graph is called synchronous data flow graph. It has 
special properties:

• the execution schedule could be precomputed,

• in most of the practical cases they have a periodic schedule, and

• the storage size necessary for stream class signals has an upper bound which could be 
precomputed too.
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The framework’s compiler will use these special properties.

2.5 Scheduling
A schedule is any sequence of the actor’s execution. It is called periodic if for each streams the 
same number of data elements are produced to and consumed from during the execution of the 
schedule. This means that in the storage associated with each of the streams the same number of 
data element are stored before the execution of the schedule and after the execution of the schedule.

The balanced data production and consumption criteria of the periodic schedule gives us a way to 
compute how many times an actor should be executed in a periodic schedule. We have to solve a set
of equations called the balance equations.

A schedule is admissible if whenever an actor is executed in the schedule it has enough input data 
for the execution. It is very important that if we have admissible schedule we could blindly execute 
the actors according to the schedule without checking if they have enough data for the execution.

We could find a periodic admissible schedule by solving the balance equations and by simulation 
after that. There are several algorithm for this.

If a graph with an open feedback loop has an admissible schedule and we put enough delay on the 
feedback path then the graph with the closed feedback loop  will have an admissible schedule.

If we have a schedule we could find repetitive patterns in it and compose nested loops from them. 
This kind of schedule is called loop schedule.

Fig. 5. The figure shows a synchronous data flow graph. The corresponding execution numbers for 
the actors are: A executed 3 times; B executed 6 times; C executed 1 times; D executed 1 times. The
admissible periodic schedule: BBA BBA BBA D C and the same schedule in loop notation: 
(3((2B)A)DC.
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3 The sdrflow language

3.1 General properties of the language
The language is declarative. It does not specify any execution flow. The execution flow is provided 
by the schedule of the data flow graph.

The language is line oriented. Each line is a sentence. Sentences are built from words. Words are 
separated with white spaces. Indentation used in the sample code has no syntactic or semantic 
meaning. It is used for clarity purposes only. If you need longer line (for example for initializing a 
large vector) you could use line continuation feature similar to the C language or to the shell scripts.

Comments start with semi-colon and end at the end of the line.

3.2 Identifiers
Identifiers are used to name primitives, composites, instances of primitives, instances of 
composites, signals and ports of primitives and composites.

They are composed from letters, digits, underscores and dots.

The BNF definition of the identifier is the following:

letter ::= ("a" | ...... | "z" | "A" |..... | "Z")
digit ::= ("1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
| "0")
simple_name ::= letter | {letter | digit | "_" | ".")
identifier ::= simple_name | ("_" {"_"} simple_name)
SP ::= (" " | "\t") {" " | "\t")}
NL ::= "\n" | "\r\n"

I usually start a primitive or composite name with upper case letter and start the name of 
the signals, ports and primitive or composite instances with lower case letter.

3.3 Literals
In the sdrflow language we use the C language like literals.

Signs ::= ("+" | "=" | "?" | "," | "/" | " " | "_" | "." | ":"
| "@" | "-")

string ::= """ ((letter | digit | signs) {(letter | digit | 
signs)}) """

unsigned_integer_number ::= digit {digit}
integer_number ::= [("+" | "-")] unsigned_integer
fixed_point_number ::= integer_number "." 
unsigned_integer_number
floating_point_number ::= fixed_point_number [("e" | "E") 

integer_number]
literal ::= integer_number | floating_point_number | string
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3.4 Composite and interface declaration
A composite source code consists of two files

• The file containing the composite declaration. The base name of the file is exactly the same 

as the  identifier of the composite and has an .sdf.src extension. For example for the 
composite M1 this file is M1.sdf.src. You should write this file for your composite.

• The file containing the interface declaration of the composite. The base name of this file is 

the identifier of the composite and has and extension of .sdf.ctx. For example for the M1 
composite this file is M1.sdf.ctx. For your composite this file is created by the compiler 
from the composite declaration file.

The primitives has an interface declaration file too with the same naming convention. For the 
primitives you have to write the interface declaration file.

The interface declaration file contains an interface declaration. The composite declaration file 
contains the composite declaration.

For declaring an interface you should

• declare if the component is primitive or composite and

• declare all ports of the component using port declaration sentences.

For declaring a composite you should:

• declare all the primitives and composites you use in the new composite using use sentences 

in the use section,

• declare the composite ports using port declaration sentences in the context section,

• declare the signals  using signal declaration sentences in the signal section,

• declare the actor instances using actor declaration sentences in the actor section,

• declare the connection of the actor instances using connection sentences in the topology 

section,

• declare the scheduling hints using schedule hint sentences in the schedule section.

The BNF description of the composite and interface declaration is the following:

composite_declaration ::=
use_section
"composite" SP composite_name NL

context_section
signal_section
actor_section
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topology_section
schedule_section

"end" NL

component_name ::= primitive_name | composite_name
primitive_name ::= identifier
composite_name ::= identifier
interface_declaration ::= 

("primitive" | "composite") SP component_name NL
context_section

"end" NL

3.5 Declaration of components to be used
In the composite declaration you have to list all components to be used. The compiler use this list to
read the components interface declaration files. You make the listing in the use section of the 
component.

The syntax of the use section id the following:

use_sentence ::= "use" SP component_name NL
use_section ::= use_sentence {use_sentence}

3.6 Signals
Signals are the data storage elements in a composite.

We have three signal classes:

• the stream class which represent a series of data elements on which the signal processing is 
working

• the variable class which is similar to the variables in the C language and used for the 
computation of control parameters

• the constant class which is similar to the constants in the C language and used to fixed value 
control parameters

The signals consists of fixed length vectors. If the length of the vector is 1 then the vector is a 
scalar.

The signals have

• Signal class

• Signal type which determine the elementary data element type of the signal from which the 
vectors of the signal consist of. We use the familiar types of the C language.

• Vector size which specify how many elementary data the vectors of the signal are consist of.
It is a fixed number for a signal.
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• An identifier (signal name)

• Vector count which determine how many vectors the signal consists of. For signals of the 
stream class this is really the windows size through which the infinite series of vectors of the
stream are seen by the composite.

For a signal declaration you must specify

• the signal class,

• the signal type,

• the vector size if it is larger than 1,

• the signal identifier,

• for variables and constants the vector count if it is larger than 1, for the steams the compiler 
will do this, so you should use an empty square bracket (“[]”) in place of the vector count.

• for constants and variables the initialization values of the data elements if they are different 
from 0.

The memory layout of the signals is the same as the memory layout of a 2 dimensional arrays in the 
C language. The vectors are the rows of the matrix. The vectors follow each others without any gap.

The syntax of the signal generation is the following:

signal_class ::= "stream" | "var" | "const"
signal_type ::= "char" | "short" | "int" | "long" | "float" | 

"double" |"uchar" | "ushort" | "uint" | "ulong" | 
"string"

vector_size ::= "["unsigned_integer"]"
vector_count ::= "["unsigned_integer"]" | "[""]"
initializator ::= literal
signal_declaration_sentence ::= signal_class SP 

signal_type[vector_size] SP signal_name
[vector_count] SP {initializator} NL

signal_section ::= "signals" NL
signal_declaration_sentence
{signal_declaration_sentence}

"end" NL

3.7 Ports
Actors connect to signals through ports.

We have three port classes:

• The input class through which the actors get the input data for signal processing. The input 
ports usually are connected to streams, but this is not necessary. The input porst could be 
connected to variables and constants too.
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• The parameter port through which the actors get the parameters they need to configure they 
signal processing algorithm. The parameter ports could be connected to variables and 
constants.

• The output port through which the vectors write the result of they signal processing or write 
parameters to variables. The output ports could be connected to streams and variables.

The ports have

• Types which determines the scalar type of the data elements accessible through the port. For 
the port we use the same types we use for the signals. The type of a port and the signal 
connected to the port should match.

• Vector size which determine the size of the data element vector. If the vector size is 1 then 
the data element is scalar. The vector size of a port and the signal connected to the port 
should be the same.

• An identifier (port name)

• Vector count which determine how many data elements (vectors or scalars) the actor during 
the like to read or write execution of its algorithm through the port. If the port connect to a 
variable or to a constant signal the vector count of the port and the signal should be the 
same.

• A delay which specify how many vectors delay the connected signal is accessed with 
through the port. The delay should be specified in the topology section.

For port declaration you must specify

• the port class,

• the port type,

• the vector size if it is larger then 1,

• the port identifier (port name),

• for all ports of the primitives and for the parameter ports of the composites the vector count 
if it is larger then 1. The parameter count of the input and output ports of the composite are 
determined by the compiler, so you should use an empty square bracket pair (“[]”) in place 
of the vector count.

In a composite declaration the ports of the composite being declared could be used like signals.

• The input and output ports are equivalent to streams. The only difference is that to an input 
port you could connect only a single component’s input port.

• The parameter ports are equivalent to constants.

Important note: The context section should begin with an input or output port declaration sentence. 
This make it sure, that the composite will have at least one input or output port.

You should declare ports in the context section of the interface declaration or and in the context 
section in the composite declaration.
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port_class ::= "input" | "output" | "parameter"
port_input_or_output_class ::= "input" | "output"
port_type ::= "char" | "short" | "int" | "long" | "float" | 

"double" | "uchar" | "ushort" | "uint" | "ulong" | 
"string"

port_vector_size ::= "["unsigned_integer"]"
port_vector_count ::= "["unsigned_integer"]" | "[""]"
port_name ::= identifier
port_input_or_output_declaration_sentence ::= 

port_input_or_output_class SP 
port_type[port_vector_size] SP port_name 
[port_vector_count] NL

port_declaration_sentence ::= port_class SP 
port_type[port_vector_size] SP port_name 
[port_vector_count] NL

context_section ::=
"context" NL

port_input_or_output_declaration_sentence
{port_declaration_sentence}

"end" NL

3.8 Signal and port connection rule
There are several rules which control how a signal and a port should be connected.

3.8.1 Class rules

Class rules control which port class to which signal class could be connected.

• Input port could be connected to

◦ stream signal,

◦ variable signal,

◦ constant signal,

◦ input port of the enclosing composite,

◦ parameter port of the enclosing composite.

• Output port could be connected to

◦ stream signals,

◦ variable signal,

◦ output port of the enclosing composite
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• Parameter port could be connected

◦ variable signal,

◦ constant signal,

◦ parameter port of the enclosing composite.

3.8.2 Production and consumption rules

These rules control how many producer and consumer could connect to a signal.

• Stream signal should be connected to

◦ one and only one output port and

◦ at least one input port.

• Variable signal should be connected to

◦ one and only one output port and

◦ at least one input or parameter port.

• Constant signal should be connected to

◦ at least one input or parameter port.

• An input port of the enclosing composite should be connected to

◦ one and only one input port 

• A parameter port of the enclosed composite should be connected to

◦ at least one input or parameter port.

• An output port of the enclosed composite should be connected to

◦ one and only one output port.

3.8.3 Type rule

This rule says

• The type of the port and the connected signal should be the same type.

• The type of a port and the connected port of the enclosed composite should be the same 

type.

3.8.4 Vector size rules

This rule says
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• The vector count of the port and the connected signal should be the same number.

• If a port is connected to the port of the enclosing signal then the vector size of the two ports 

should be the same number.

3.8.5 Vector count rule

This rule controls how the vector count of a port should relate to the vector count of the connected 
signal.

• If a port of any class is connected to a variable or constant signal the vector count of the port

and the vector count of the connected signal should be the same number.

• If a parameter or input port is connected to the parameter port of the enclosing composite 

then the vector count of the two ports should be the same number.

3.9 How the signals are seen through ports
The actors see the signal through they ports. There are some rules foe this.

• The actors always see vector count number of consecutive vectors through they ports.

• If the port is connected to variable or constant signal or parameter port of the enclosing 

composite the vector count number of vectors always start from the first vector of the signal.
(Important: the first vector is the vector with index 0). This means that in this case the actor 
always sees all the vectors of the connected signal.

• If the port is connected to a stream or input or output port of the enclosing composite the 

actor still sees vector count number of vectors, but these vectors will be different vectors in 
every executions of the actor. It is like the actor sees the stream’s buffer through a moving 
vector count wide window. In the first execution in a repetition cycle the vectors seen by the 
actor are the first vector count vectors stored in the stream’s buffer. In each consecutive 
execution the vector count number wide window will advance by vector count number of 
vectors.

• If a stream is delayed to an input port:

◦ the stream’s buffer is enlarged by delay number of vectors,

◦ the actor which reads the signal sees the signal through its input port in the usual ways,

◦ the window of the actor which write the signal is offseted in the first execution in a 

repetition cycle by delay number of vectors from the beginning of the signals buffer. 
After that the window slides in the usual ways.

◦ At the end of the repetition cycle delay number of vectors are copies from the end of the 

signal’s buffer to the beginning of the buffer.
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3.10 Actors
Actors are instances of primitive or composite components. They should be declared in the actor 
section of a composite declaration.

For an actor declaration you should declare

• if the actor is primitive or composite

• the identifier of the primitive or composite

• the identifier of the actor

The syntax of the actor declaration is the following:

primitive_declaration_sentence ::= "primitive" SP 
primitive_name SP actor_instance_name NL

composite_declaration_sentence ::= "composite" SP 
composite_name SP actor_instance_name NL

actor_declaration_sentence ::= (primitive_declaration_sentence
| composite_declaration_sentence)

actor_instance_name ::= identifier
actor_section ::=

"actors" NL
(actor_declaration_sentence)
{actor_declaration_sentence}

"end" NL

3.11 Topology
The topology means how the actors are connected by signals. It is declared in the topology section.

We use three operators to declare connections. These are:

• the source operator: ">>" , which are used like:

source ">>" sink

• the sink operator: "<<" , which are used like:

sink ">>" source

• the delayed sink operator: "<delay<" , which are used like:

sink "<delay<" source

Rules for using these operators

• On the left side of the operator always is a port.

• On the right side of the operator always is a signal or a port of the enclosing composite.
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• On the left side of a delayed sink operator always is an input port.

• On the rigth side of an delayed sink operator always is a stream.

• On the left side of a sink operator alwys is an input or parameter port.

• On the left side of a source operator always id an output port.

The formal syntax is the following:

connection_declaration_sentence ::=
((actor_port_name SP (">>" | "<<") Sp 

composite_port_name) |
(actor_port_name SP (">>" | "<<") SP signal_name) |
(actor_input_port_name SP ("<"delay"<") SP stream_name)) 
NL

actor_port_name ::= actor_instance_name"."port_name
actor_input_port_name ::= 
actor_instance_name"."input_port_name
input_port_name ::= identifier
stream_name ::= identifier
topology_section ::=

"topology" NL
connection_declaration_sentence
{connection_declaration_sentence}

"end" NL

3.12 Schedule
In the schedule section we declare, which type of schedule we like to have.

We could have two type of schedule

• In case of auto schedule the compiler will compute the schedule for us.

• In case of manual schedule we have to define the schedule, the compiler only check if the 

schedule is correct.

For both type of schedule we have to specify for which connected subgraph the schedule type 
should be applied. We specify this with a name of an actor belonging to that subgraph. Most of the 
cases your composite has only on connected subgraph. In that case you could specify any actors.

Important to note that the execution of the schedules will be in the order the subgraphs are 
specified. If you have actors which are connected by variables and constants you have a virtual 
subgraph. You are recommended to specify this subgraph first by any of the actors which are 
connected by variables or constants only. In this case these actors will be executed first in an 
repetition cycle. These actors will be executed in the topological order and will be executed only 
ones in a repetition cycle.
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The manual schedule id for those only who like to experiment with scheduling, or for those rare 
cases when the auto scheduling fails. In mos of the cases you are recommended to use the auto 
schedule.

The formal description of the schedule section is the following:

shedule_element ::= actor_instance_name NL | loop_element
loop_element ::=

"do" SP unsigned_integer NL
shedule_element
{shedule_element}

"loop"
manual_schedule ::= 

"manual" SP actor_instance_name NL
schedule_element
{scedule_element}

"end" NL
auto_schedule ::= "auto" SP actor_instance_name NL
schedule_section ::= 

"scedule"
(manual_schedule | auto_schedule)
{(manual_schedule | auto_schedule)}

"end"

4 Primitives
Primitives are shared libraries which are dynamically loaded into the framework’s runtime when a 
data flow is loaded using the dlload() function.

4.1 Files and directories
Several files and directories are related to a primitive. These have specific names which contains the
primitive name the name which will be used for the primitive in the sdrflow language as identifier. 
In the following we use <primitive_name> for this name.

The important files are (the path names are relative to the framework’s sdrflow directory):

actor/<primitive_name>.sdf.so

This is the shared library file of the primitive. The runtime will look for the shared library 
files in the actor directory. The build process will put this file into the actor directory.

context/<primitive_name>.sdf.ctx

This is the interface declaration file of the primitive. The compiler will look for the interface
declaration files in the context directory. The build system will put this file into the context 
directory.
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primitive/<primitive_name>/<primitive_name>.c

This file contains the source code of the primitive. The current build system assumes that all 
the source code is in a single file. If you create your primitive with the build system this file 
with empty function bodies will be created for you.

primitive/<primitive_name>/<primitive_name>.h

This is the header file for your primitive. It contains structure and type declarations for the 
primitive. If you create your primitive with the build system this file will be created for you 
with partly filled bodies of some structures. You should complete the declaration of those 
structures yourself.

primitive/<primitive_name>/<primitive_name>.sdf.ctx

This is the source file of the interface declaration of the primitive. If you create your 
primitive with the build system this file will be created for you with an empty context 
section. You should complete the context section yourself. The build system will copy this 
file to the context directory.

build/primitive/<primitive_name>/<primitive_name>.o

This is the compiled object code created in the build process.

From the path names you could see which directories are related to a primitive.

4.2 Functionalities
Every primitives should provide five functions. The signature of these function are the same: they 
get a void pointer and return an integer value. The return value should be 0 if the function has run 
successfully an nonzero if it failed. The functions are:

int <primitive_name>_load(void *system_catalog) function.

This function is called just after the shared library of the primitive has been loaded. In this 
function you should do primitive level initialization and primitive level of resource 
allocation. This initialization a resource allocation are for all instances of the primitive. The 
load() function gets a pointer to the system_catalog structure.

int <primitive_name>_init(void *context) function.

This function is called every time when the runtime has created an instance of the primitive. 
In this function you should do instance level initialization and resource allocation. The 
function gets a pointer to the context structure of the primitive instance which contains 
pointers to the self structure of the primitive instance and the buffers of the signals 
connected to the ports of the primitive instance.

int <primitive_name>_fire(void *context) function.
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This function is called whenever the instance of the primitive should be executed in the data 
flow. In this function you should provide the signal processing algorithm of the primitive. 
The function gets a pointer to the context structure of the primitive instance which contains 
pointers to the self structure of the primitive instance and the buffers of the signals 
connected to the ports of the primitive instance.

int <primitive_name>_cleanup(void *context) function.

This function is called just before the runtime will delete an instance of the primitive. It is 
called before the delete of every instance. In this function you should free all instance level 
resource which have been allocated in the init() function. The function gets a pointer to the 
context structure of the primitive instance which contains pointers to the self structure of the 
primitive instance and the buffers of the signals connected to the ports of the primitive 
instance.

 int <primitive_name>_delete(void *system_catalog) function.

This function is called just before the runtime removes the shared library using the dlclose() 
function. In tis function you should free all the resources you allocated in the load() 
function. This function gets a pointer to the system_catalog structure.

If you use the build system to create the files and directories for your new primitive then the empty 
functions will be created for you in the <primitive_name>.c file. In the following example the 
primitive name is YourPrimitive.

int YourPrimitive_load(void *sys_catalog)
{
// You should put your own code here

return 0;
}

int YourPrimitive_init(void *context)
{
// You should put your own code here

return 0;
}

int YourPrimitive_fire(void *context)
{
// You should put your own code here

return 0;
}

int YourPrimitive_cleanup(void *context)
{
// You should put your own code here

return 0;
}
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int YourPrimitive_delete(void *sys_catalog)
{
// You should put your own code here

return 0;
}

4.3 Interfacing primitives to the runtime
The interfacing of the primitive to the runtime is done with the use of several structures.

<primitive_name>_catalog structure

This is the main interface to the runtime. Each primitive have to provide this structure and 
the structure should have a specific name <primitive_name>_catalog where 
<primitive_name> is the same name you use for your primitive in the file names, directory 
names and in the primitive interface declaration. The runtime will look for this structure 
using the dlsym() function.

In this structure the primitive provide

• a pointer to the name of the primitive, 

• the size of the self structure of the primitive instances and 

• the pointers to the five functions of the primitive.

The declaration of the structure is in the include/primitive_interface.h file:

typedef int (*primitive_entry_t)(void *context);
struct _primitive_catalog
{

char *name;
size_t self_size;
primitive_entry_t fire;
primitive_entry_t init;
primitive_entry_t cleanup;
primitive_entry_t load;
primitive_entry_t delete;

}__attribute__((packed));
typedef struct _primitive_catalog primitive_catalog_t;

The structure is defined in the <primitive_name>.c file. If you use the build system for 
creating your primitive then the structure definition will be created for you.

primitive_catalog_t YourPrimitive_catalog =
{

.name = "YourPrimitive",
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.self_size = sizeof(YourPrimitive_self_t),

.init = &YourPrimitive_init,

.fire = &YourPrimitive_fire,

.cleanup = &YourPrimitive_cleanup,

.load = &YourPrimitive_load,

.delete = &YourPrimitive_delete
};

system_catalog structure

The system catalog is a facility with which the runtime could provide callback functions for 
the primitives. This is useful, if like to run the data flow on a processor without operating 
system. In that case the runtime could provide special functionality beyond the standard C 
language libraries. In the current release we only demonstrate this possibility, but we pass 
NULL pointers as function pointers.

The structure declaration in the include/primitive_interface.h file: Important: the callback 
functions do not exist, NULL pointers are passed in the structure in the current release.

typedef int (*open_cmd_channel_t)(char *name);
typedef int (*read_cmd_channel_t)(int channel, char *cmd,

int size);
typedef int (*close_cmd_channel_t)(int channel);

struct _system_catalog
{
// char *program_name;

int version;
open_cmd_channel_t open_cmd;
read_cmd_channel_t read_cmd;
close_cmd_channel_t close_cmd;

}__attribute__((packed));

typedef struct _system_catalog system_catalog_t;

<primitive_name>_context structure

Using this structure, the runtime passes

• pointer to the self structure of the primitive

• pointers to the buffers of the signals connected to the ports of the primitive.

Pointer to this structure is passed to the init(), fire() and cleanup() functions of the 
primitives.

The declaration of the structure should match the declaration of the primitive interface.
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If the declaration of the primitive interface in the YourPrimitive.sdf.ctx file id the following:

primitive YourPrimitive
context

input float[2048] inp[1]
output double[2048] out[1]
parameter int param1

end
end

then the declaration of the context structure in the YourPrimitive.h file should be the 
following:

struct _YourPrimitive_context
{

YourPrimitive_self_t *const self;
float *const inp;
double *const out;
int *const param1;

}__attribute__((packed));
typedef struct _YourPrimitive_context

YourPrimitive_context_t;

You are recommended to declare the pointers as constant pointers. It is not necessary, but it 
is for your safety.

<primitive_name>_self structure

This structure could be used to save data from one execution of the fire() function to the next
executions. You could save the instance level resources in this structure too.

The runtime provide you the instance name of your primitive in this structure. In the current 
relese the instance name is the identifier of the instance as declared in the sdrflow language 
code. In the next release it will be a path name which will show where the hierarchy the 
instance is. This pathname will be unique in the runtime.

You should declare this structure in the <primitive_name>.h header file. If you create your 
primitive with the build system, a partially declared structure containing only the instance 
name pointer will be provided for you.

An example from the SignalGen.h file

struct _signalgen_self
{

char *instance_name;
float freq;
float gain;
double phase;
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double phase_increment;
};

typedef struct _signalgen_self signalgen_self_t;

4.4 Pointer management
Primitives access signal data through the pointers in the context structure. These pointers are 
declared for the primitive as constant pointers. The primitive are not allowed to change them. The 
primitive could use them with array indexing or assign them to a not constant pointer. The runtime 
manages the values of this pointers. The management is done according to the rules in chapter 3.9.

• The primitive always can access

vector_size * vectors_count * sizeof(port_type)

bytes memory beginning with the address the pointer points to. Here vector_count, 
vector_size and port_type is related to the port the pointer corresponds to.

• If the pointer corresponds to a port which is connected to variable or constant signal or 

parameter port of the enclosing composite the accessible memory always starts at the 
beginning of the buffer of the signal. At the beginning of a repetition cycle the runtime 
always resets the pointer value to the address of the beginning of the buffer.

• If the pointer corresponds to a port which is connected to a stream or input or output port of 

the enclosing composite the accessible memory slides through the buffer of the signal. At 
the beginning of the repetition cycle the pointer is set to point to the beginning of the buffer 
of the signal. After each execution of the primitive fire() function the runtime increases the 
pointer value with

vector_size * vectors_count * sizeof(port_type)

 bytes. 

• If a stream is delayed to an input port:

◦ the stream’s buffer is enlarged by (delay * vector_size * sizeof(signal_type)) bytes.

◦ the pointer which corresponds to the input port is managed in the usual ways,

◦ the pointer which corresponds to a port which is connected to a delayed signal at the 

beginning of a repetition cycle is set to (addressof(beginning_of_the_buffer) + (delay * 
vector_size * sizeof(signal_type))). After each execution of the primitive fire() function 
the pointer is increased in the usual ways..

◦ At the end of the repetition cycle (delay * vector_size * sizeof(signal_type)) number of 

bytes are copied from the end of the buffer to the beginning of the buffer.
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