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Hello everybody. You are sitting in a presentation of the SDR 
Academy. My name is Janos Selmeczi and my ham radio call 
sign is HA5FT. I am from Hungary and in this session I will 
present you a new, lightweight data flow framework which could 
be used to build SDR application on various platforms. I could be 
reached at the e-mail address on the slide or in the HF amateur 
bands.



  

 

  

Introduction

● HA5FT

● Operator since 1968

● Callsign since 1982

● AMSAT related works at HG5BME/HA5MRC

● Electronic engineer for 40 years

● Equipments for space probes

● Industrial control systems

● Country wide financial systems

First of all let me introduce myself. I am an electric engineer. In 
my professional life I worked on many fields of my profession 
from designing and building equipment for space probes to 
creating large, country wide financial systems like an interbank 
clearing system. I have been ham radio operator since 1968 and 
I have got my license and my call sign in 1982. I was involved in 
some AMSAT related work at the radio club of the Technical 
University of Budapest. I am having been a pensioner since the 
beginning of this year and hopefully I will have more time for my 
hobby.



  

 

  

What is it all about?

● I have a dream

● Back to the school

● Do you speak SDF?

● Implementation

I will talk to you about a data flow framework. It is not ready yet. 
It is in alpha stage, but I feel important to present it to a wider 
audience because it is different from the data flow systems you 
likely know about and because I would like to have your 
feedback on my ideas. There are several other data flow 
systems available. Most of you know gnu radio, some of you 
may know Ptolemy which is the standard data flow system in the 
academic world and there are some newcomers like the Photos 
SDR.  My system is different because it uses a different data 
flow model, it is written in C, it could be run without an operating 
system and could run in small, embedded processors like ARM 
Cortex-M4.



  

 

  

I have a dream

● Component based architecture

● Model driven development

● Distributed system support

● Multiple platforms

● A variety of processors

Framework for SDR

I have dreamed of  this system for many years. In my dream 
there was a development framework which let you concentrate 
on writing algorithms, and which frees you from the boring job of 
writing glue code to make a bunch of algorithm work together. If 
you do some research on the net you will see that such a system 
should be model driven and component based.



  

 

  

Dreaming of componnents

● Large components

● Primitives and composites

● Primitives written in C or Verilog

● Special language for composition

● Static or shared libraries

● Embedded or dynamically loaded

I have decided to use coarse-grained components. There are 
two type of components in the framework: the primitives which 
are written in C language and the composites which are 
constructed from the primitives and other composites. The 
composite components are defined using a special language, 
the SDF language which is part of the framework.



  

 

  

Dreaming of models

● Synchronous dataflow

● Static schedule

● Textual model description

● Extensions

– hierarchical description

– explicit control data, parameters

– C-like switch

– iterator
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The framework is based on the synchronous data flow model. It 
uses some extensions to the basic SDF model. These 
extensions increase the usability of the model. The most 
important of those are the hierarchical description and 
hierarchical scheduling, one to many connections, the explicit 
use of control parameters, a C like switch construct and an 
iterator. In contrast to the dynamic data flow used in gnu radio 
and Photos SDR the synchronous data flow enable you the 
explicit use of feedback loops in the data flow.



  

 

  

Dreaming of compilers

● Compiles the SDF language

● It is a declarative language

● Describes composit 
components

● Compiler generates

– binary virtual machine code

– C code

– verilog code

composite M
   context
      input     float[5] i1[]
      output    float[5] o1[]
      parameter int      p1
   end
   signals
      stream    float[5] s1[]
      const     int      c1 
273
   end
   actors
      primitive  P1  a1
      composite  C1  a2
      primitive  A7  a7
   end
   topology
      a1.i1  <<  i1
      a1.o1  >>  s1
      a1.p1  <<  p1
      a2.i1  <2< s1
      a2.p1  <<  c1
      a2.o1  >>  o1
   end
   schedule
      auto  a1
   end
end

The framework uses a special compiler to translate the model 
description into a runnable code. The model description is text 
base. It was my hardest decision to resist to the use of a 
graphical based description. Today the compiler generate code 
which could be run by a virtual machine. In the future direct C 
code generation will be possible, but if you really use coarse-
grained components the speed advantage of a C language glue 
code is not substantial. On the slide you could see a source 
code example.



  

 

  

Dreaming of platforms
● Linux

● FreeRTOS

● no OS, bare metal

● Intel x64

● ARM Cortex-A9, Cortex-M4

● PIC32

I have implemented the framework in such a way, that the 
runtime part could be run without an operating system. So using 
the framework we could build an application for small embedded 
processors. You may noticed, that at today there is no support 
for the Windows platform. The main reason of this that I do not 
have Windows 10 installation at home. This may change in the 
future.



  

 

  

Dreaming of processes

SDF compiler C compiler C compiler

runtime
platforms

runtime
C

primitives
C

composites
C

composites
SDF

composites
binary

actors
libraries

runtime
binary

debugger
instruments

The development process has three threads. The rightmost 
thread in the slide is for creating the runtime system. Most 
people do not need to bother them self with this. They could use 
the ready-made runtime systems. If you like to have an 
embedded application you may want to embed the components 
into the runtime system, so you may need to relink the object 
code of a ready-made system. Most people will use the 
development process of the primitive components and the 
creation process of the composites.



  

 

  

Back to the school

● Synchronous actors

● Signals

● Synchronous data flow graph

● Topology matrix

● Balance equation

● Solving the equation

● Example ballance equation

● Scheduling

Now we will go back to the school to learn some of  the theory of 
the data flow systems.



  

 

  

The data flow paradigm

● A program is divided into algorithms and data 
which the algorithms are working on.

● Algorithms are executed whenever input data 
are available.

● A data flow system is described as a directed 
graph

● Nodes representing the algorithms

● Edges representing the data

● Nodes are usually called actors

● Edges are sometimes called signals
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In the data flow paradigm we split our program into algorithms 
which do the data processing and data management 
components which manage the data the algorithms are working 
on. There are no other code components to deal with.  The 
algorithms will execute whenever they have enough input data. 
This kind of execution of the algorithms will provide the system 
functionality. To define and specify a system we should only 
describe the connection between the components and the data 
consuming and producing behavior of the algorithms. For the 
description we use a directed graph.



  

 

  

Actors

● Nodes of a data flow graph

● Atomic execution of their algorithms

● Synchronous actor: fixed consumption and production

a1

3

2
4

● Cosumes 3 data elements on one 
input and 2 data elements on the 
other input

● Produces 4 data elements on the 
output

a1
2

4
a1

2
4

3 3
[2]

[4]

[3]

[4]

No execution Execution

The instances of the algorithms usually called actors. They are 
the nodes of the directed graph. They do atomic execution of 
their algorithms. They behavior is specified by how many data 
their consume and produce during a single execution. They 
always execute if they have enough data to work on. If the 
production and consumption behavior of an actor is fixed the 
actor is called synchronous.



  

 

  

Signals
● Edges of a data flow graph

● FIFO like data storage

● Connect actors

● Properties

– source(e1)=a1, destination(e1)=a2

– production(e1)=3, consumption(e1)=2

– delay(e1)=4

a1 a2
e13 2

(4)

a1

a2

a3

a1

a2

a3

e1
is transformed to

e1

e2

The instances of the data management elements usually called 
signals. They are the edges of the graph. They connect the 
actors. They behave like FIFO buffer with unlimited storage 
capacity. They have a single source and a single destination 
actor. So the multiple destinations connections used on block 
diagrams should be translated to multiple single destination 
connections for a pure theoretical model. However in the 
implementation we will not do this transformation, because I 
have extended the basic data flow model to allow multiple 
destinations connections. The working of a signal is determined 
by what is the source and what are the destination actors, by the 
data production of the source and by the data consumption of 
the destination actors and finally by the data delay through the 
signal. The delay is the data elements initially placed into the 
signal buffers.



  

 

  

Synchronous data flow graph

● Directed multigraph

● Nodes are synchronous actors

● Edges are signals

● Multi destination signals are transformed 
multiple single destination signals

● Signals may have delays

● Example

– actors: A, B, C, D

– signals: s1, s2, s3, s4

– no delays

A

C D

B
1 2

2

3

1

3

21 s4

s1s2

s3

The graph should not be fully connected, it could be a multi 
graph. If all the actor in the graph are synchronous the graph is 
called synchronous data flow graph. Synchronous graphs have 
special properties.



  

 

  

Topology matrix
● Shows production and consumption behavior of 

the data flow graph

● columns correspond to actors

● rows correspond to signals

                        prd(s), if a = src(s)
    (s,a) = -cns(s), if a = snk(s)
             0,      otherwise

● The evolution of the graph

q(a)=inv(a), the number of invocation of actor a

b(s) the number of data element in signal s

b0(s) the number of data elements in signal s 
before the execution

         b = q + b0

A

C D

B
1 2

2

3

1

3

21 s4

s1s2

s3

  1  0  0 -3 
  2  0 -3  0 

 =  -2  1  0  0 
  0  0 -1  2 

Now I will discuss how the amount of data stored in the signals 
change during the execution of the graph. This could be 
described by using the topology matrix. In this matrix the 
columns correspond to actors and the rows correspond the 
signals. A matrix element describe how many data an actor is 
producing to or consuming from a signal. Positive number 
means production, negative number means consumption. You 
could compute the data changes using the equation on the slide. 
The vectors b, b0 and q has integer elements. The element of q 
specify how many times the actors are executed. The elements 
of vector b show the number of data stored in the signals after 
the execution and the elements of b0 show the number of data 
in the signals before the execution.



  

 

  

Balance equation

 0 = q

● The solution shows the number of 
invocations of the actors after which the 
number of data elements stored in the 
signals will be unchanged.

● Has solution if the rank of the matrix is one 
less than the number of columns.

A

C D

B
1 2

2

3

1

3

21 s4

s1s2

s3

  1  0  0 -3 
  2  0 -3  0 

 =  -2  1  0  0 
  0  0 -1  2 

 3
          6
q =  2

 1

Now lets have a q vector with integer elements. If we are lucky 
the number of data stored in the signal after the execution will be 
the same as it was before the execution. In this case we say that 
the q vector specifies a periodic execution of the system. If a 
system has periodic execution it could be executed forever with 
limited signal storage capacity. We could find a periodic 
execution by solving the balance equation of the system. On the 
slide you can see an SDF graph, its topology matrix and the 
solution q vector of its balance equation.



  

 

  

Solving the equation

● Recursive algorithm
● Uses fractional number arithmetic
● The algorithm

– Choose an actor

– Execute it once

– If a connected actor has not been 
executed yet then execute it so 
that the edge connecting the two 
actors will be ballanced

– Do this recursively for all actors

– Convert the fractional number of 
executions to integer ones

procedure ComputeRepetition(G)
for each A in actors(G) do reps[A] = 0;
select A' from actors(G);
SetReps(A',1);
m = lcm({denom(reps(X)) | X in actors(G)});
for each A in actors(G) do reps(A) = m * reps(A);

for each e in edges(G) do
if (reps(src(e)) * prd(e)) <> (reps(snk(e)*cns(e)) then

error: inconsistent graph
exit

endif
endfor

endfor
for each A in actors(G) do q[A] = 

numer(ReducedFraction(reps[A]));
endproc

procedure SetReps(A,n)
reps(A) = n;
for each e in output(A) do 

if reps(snk(e)) = 0 then

SetReps(snk(e),ReducedFraction((n*prd(e))/cns(e)));
endif

endfor
for each e in input(A) do

if reps(src(e)) = 0 then

SetReps(src(e),ReducedFraction((n*cns(e))/prd(e)));
endif

endfor
endproc

If the rank of the topology matrix is one less than the number of 
actors the balance equation has a solution. The rank of the 
matrix means the number of independent row vectors of the 
matrix. There are many algorithms for solving this kind of 
equation. On the slide you see a particular algorithm which uses 
rational number arithmetic. It is a recursive algorithm. It works 
the following ways. You choose an arbitrary actor. You execute it 
ones. After the execution you visite all connected actors. If a 
connected actor have not been executed yet, you will executed it 
in such a way, that the signal connecting the two actors will be 
balanced. If the connected actor has already been executed you 
will do nothing with this actor. You will do this recursively for all 
the actors. Finally you convert the fractional execution number to 
integers by multiplying them with the least common multiple of 
their denominator.



  

 

  

Balance equation example

Choose actor A

reps[A] = 1/1

for edge s1: reps[D]=(1/1)*(1/3) = 1/3

   for edge s4: reps[C]=(1/3)*(2/1)=2/3

      for edge s2: do nothing because reps[A]<>0

for edge s2: do nothing because reps[C]<>0

for edge s3: reps[B]=(1/1)*(2/1)=2/1

now reps={1/1, 2/1, 2/3, 1/3}

lcm(1,1,3,3)=3

reps=reps*3={3/1, 6/1, 6/3, 3/3}

q={3,6,2,1}

A

C D

B
1 2

2

3

1

3

21 s4

s1s2

s3

  1  0  0 -3 
  2  0 -3  0 

 =  -2  1  0  0 
  0  0 -1  2 

 3 
         6 
q =  2 

 1 

On the slide there is an example for solving the equation. 
Everybody interested in this could follow the detailed explanation 
on the slide and the description of the algorithm on the previous 
slide.



  

 

  

Scheduling

● Schedule is a sequence of actor 
executions

● Solution of the balance equation defines 
the number of actor executions for a 
periodic schedule

● Scheduling algorithms usually use 
simulation.

● Example: BBA BBA BBA D C

● Loop schedule: (3((2B)A))DC

A

C D

B
1 2

2

3

1

3

21 s4

s1s2

s3

  1  0  0 -3 
  2  0 -3  0 

 =  -2  1  0  0 
  0  0 -1  2 

 3 
         6 
q =  2 

 1 

A schedule is a sequence of actor execution. If in the schedule 
the execution number for each actors correspond to the solution 
of the balance equation then the schedule is called periodic 
schedule. A schedule is called admissible if whenever an actor is 
executed in the schedule it has enough input data to execute. A 
graph could have periodic schedule but not periodic admissible 
one. We could find periodic admissible schedule by simulation. 
There are several algorithms to do this. It is important to note 
that if we have an admissible schedule we could blindly execute 
the actors according to the schedule not taking care if the actors 
have enough input data or not. For sure they have. It is very 
important that a graph could have periodic admissible schedule 
even if it has loops. If it do not have such a schedule you could 
put some delays on the feedback path. It could be proved that if 
we  use enough delays on the feedback path the graph will have 
periodic admissible schedule if it has such a schedule in case of 
opened feedback loops. This means, that using my model you 
could build systems with explicit feedback. Furthermore if we 
have admissible periodic schedule we could precompute how 
large data storage each signal must have.



  

 

  

Do you speak SDF?

● Composite actor declaration

● Signals and ports declaration

● Topology declaration

● Actors declaration

● Schedule declaration

● Example

After learning some theory we will see how we could describe a 
system by the SDF language. The language is declarative, there 
is no program flow defined by the language. The language is line 
oriented. Each line is a sentence. Sentences are built from 
words. Words are separated by white spaces. The indentation 
on the examples are for clarity purposes only. Comments starts 
with a semi-colon and ends at the end of the line.



  

 

  

Composite actor declaration

composite_declaration ::=
"use" SP component_name NL
{"use" SP component_name NL}
"composite" SP composite_name NL

context_section NL
signal_section NL
actor_section NL
topology_section NL
schedul_section NL

"end” NL
interface_declaration ::= ("primitive" | "composite") SP actor_name

context_section NL
"end" NL

SP ::= (" " | "\t") {(" " | "\t")}
NL ::= "\n" | "\r\n"

The purpose of the language is to describe composite 
components. If a composite has no inputs and outputs then it 
could be used as a top level component of a system. The real 
external data input and output must be implemented by source 
and drain primitives. The declaration of a composite component 
has two parts. The first part lists the primitive and composite 
components used in the composite. We use the use sentence 
for this purposes. If the compiler finds a use sentence it will read 
the component's interface specification from the interface 
declaration file. This is similar to the include mechanism in the C 
language. The second part declares the composite. It has five 
sections. The context section declares the interface of the 
component. The signal section declars the signals used by the 
component. The actor section declares the actors of the 
components. The topology section declares how the signals 
connect the actors. Finally the topology section declares what 
kind of scheduling should be used.



  

 

  

Composite actor example

a2

i1

p1
o1a1

2

v1

s1

c1 1

3

1

1
11

4

;in fájl P.ctx
primitive P
   context
      input int[5] i1[2]
      input int i2[1]
      output float[3] o1[4]
      parameter long p1[1]
   end
end

;in fájl C.ctx
composite C
   context
      input float[3] i1[1]
      output int o1[3]
      output int o2[1]
      parameter float p1[1]
   end
end

;composite D
use P
use C
composite D
   context
      input int[5] i1[]
      output int o1[]
      parameter long p1[]
   end
   signals
      stream float[3] s1[]
      var    int v1
      const  float c1 3.14
   end
   actors
      primitive P a1
      composite C a2
   end
      

   topology
      a1.i1 << i1
      a1.p1 << p1
      a1.i2 << v1
      a1.o1 >> s1
      a2.i1 <1< s1
      a2.p1 << c1
      a2.o1 >> o1
      a2.o2 >> v1
   end
   schedule
;     manual a1
;        a1
;        do 4
;           a2
;        loop
;     end
      auto a1
   end
end

To have a feeling of the language there is a composite 
declaration on this slide. It is a fairly simple composit having only 
two actors. On the left-hand column you could see the interface 
declarations of the components. On the middle column you 
could see the use sentences and the interface, signal and actor 
declaration sections of the composite. Finally on the right hand 
column there are the topology and schedule declaration. Here 
the lines beginning with semicolon are comment line.



  

 

  

Signals and ports

signal_declaration ::= signal_class SP signal_type[vector_size] SP signal_name
[vector_count][set_size] SP {initializator}

signal_class ::= "stream" | "var" | "const"
signal_type ::= "char" | "short" | "int" | "long" | "float" | "double" |

"uchar" | "ushort" | "uint" | "ulong" | "string"
vector_size ::= "["uint_literal"]"
vector_count ::= "["uint_literal"]" | "[""]"
set_size ::= "{"uint_literal"}"
initializator ::= long_literal | double_literal | character_literal | string_literal
port_declaration ::= port_class SP signal_type[vector_size] SP port_name

[vector_count][set_size] 
port_class ::= "input" | "output" | "parameter"

Examples:
stream   float[15]    s1[]{8}
input    double[1024] i1[3]
constant int          c1 3476

Now lets have a look on the signal and port declarations. This is the most 
complex part of the language. Signal and port declarations are similar. We have 
three signal classes: stream, variable and constant.  The signals have type. We 
use the familiar C language types and the string type. The signals could be  
scalars or vectors. Scalars are one element long vectors.  If the vector size is 
greater than 1 we have to specify it after the type declarator. We could specify 
the storage size by using the vector count after the signal identifier or we could 
left to the compiler to determine the storage size automatically. Finally we could 
declare a finite set of signals by the set size inside curly braces at the end of the 
sentence. Streams has the FIFO behavior discussed previously. Variables and 
constants are similar to the global variables in C and are omitted from the 
scheduling. They could be used for providing control parameters for the actors. 
We have three port classes: input, output and parameter. The type, the vector 
size and the set size should be matched by the corresponding properties of the 
signal connected to the port. The vector count here means the number of 
vectors the actor uses in a single execution.  Let see examples. s1 is a stream 
of float type with vector size of 15 and the vector count will be determined 
automatically. The signal set has 8 signals. i1 is an input port which should be 
connected to a signal of type double with vector size of 1024 and set size of 1. 
The actor consumes 3 signals in a single execution. c1 is a constant of type of 
integer. It is scalar and has a value of 3476. I have introduced vectors because 
they make it possible to use variable length input and output data and still have 
synchronous data flow. For example you could have and actor which works on 
variable length input messages, or you could easily change the DSP block 
length in an SDR application.



  

 

  

Signals and ports
context_section ::= "context" NL

port_declaration NL
{port_declaration NL}

"end" NL
signal_section ::= "signals" NL

signal_declaration NL
{signal_declaration NL}

"end" NL
Example:

primitive P
context

input float[12] i1[3]
output float[12] o1[3]{6}
parameter int p1

end
end

Signal declaration sentences must be used in the signal section. 
Port declaration sentences must be used in the context section 
in the composite or in the component interface declaration. On 
the slide you could see the interface declaration of the primitive 
component P.



  

 

  

Topology

connection_declaration ::= 
(port_name (">>" | "<<") composite_port_name) |
(port_name SP (">>" | "<<") SP signal_name) |
(input_port_name SP ("<"uint_literal"<") SP signal_name) |

port_name ::= actor_instance_name"."actor_port_name
input_port_name ::= actor_instance_name"."actor_input_port_name
topology_section ::= "topology" NL

connection_declaration NL
{connection_declaration NL}

"end" NL
Example:

topology
a1.i1 << i1
a1.o1 >> s1
a2.i1 <2< s1
a2.o1 >> o1

end

In the topology section we declare the connections. We always 
declare to where an actor port is connected to. We could 
connect the actor port to a port of the composite or to a signal. 
The connection shows the direction of the signal flow and 
optionally the delay. For example port i1 of actor a1 is connected 
to the input port i1 of the composite. The port o1 of actor a1 is 
connected to the signal s1. The i1 port of actor a2 is connected 
to the signal of s1 through a delay of  2. Finally port o1 of actor 
a2 is connected to the o1 port of the composite.



  

 

  

Actors
primitive_declaration ::= "primitive" SP primitive_name SP actor_instance_name
composite_declaration ::= "composite" SP composite_name SP actor_instance_name
simple_actor_section ::= "actors" NL

(primitive_declaration | composite_declaration) NL
{(primitive_declaration | composite_declaration) NL}

"end" NL
switch_declaration ::= "switch" SP switch_instance_name  SP "("switch_variable_name")" NL

context_section NL
simple_actor_section NL
[signal_section] NL
"topology" NL

{case_section} NL
default_section NL

"end" NL
"end" NL

case_section ::= "case" SP "("integer_literal")" NL
connection_declaration  NL
{connection_declaration NL}

"end" NL
default_section ::= "default" NL

connection_declaration NL
{connection_declaration  NL}

"end" NL

Actor declaration sentences should be used in the actors 
section. We have four actor classes: primitive, composite, switch 
and iterator. For primitive and composite actors we use a single 
sentence for declaration. In the sentence we declare the actor's 
class, the component's name and the actor's name. For switch 
and iterator classes the declaration uses multiple sentences. 
These multi-sentence declarations are in-line composite 
declarations with spetial extensions..



  

 

  

Actors
actor_section ::= 

"actors" NL
(primitive_declaration | composite_declaration | switch_declaration ) NL
{(primitive_declaration | composite_declaration | switch_declaration ) NL}

"end" NL

signals
…
variable int swvar

end
actors

primitive P1 a1
switch sw1 (swvar)

context
input int[5] i1[2]
output float[3] o1[4]

end
signals

constant int c1 125
end
actors

primitive P2 sa1
composite C1 sa2
composite C2 sa3

end

topology
case (1)

sa1.i1 << i1
sa1.i2 << c1
sa1.o1 >> o1

end
case (12)

sa2.i1 << i1
sa2.o1 >> o1

end
default

sa3.i1 << i1
sa3.o1 >> o1

end
end

end
end

On this slide you should see a primitive actor and a switch 
declaration in the actor section. In the switch declaration we 
declare which variable controls the switch, the switch external 
interface, the optional signals used inside the switch, the actors 
used by the switch and finally how the actor are connected to the 
ports of the switch and optionally to the internal signals. Inside a 
switch you could use only primitive or composite actors, but not 
switches or iterators. The iterator declaration in concept similar 
to the switch declaration. The iterator uses set of signals in his 
inputs and / or outputs and in a single invocation it iterates 
through the signals of the sets. In each iteration step it could use 
the same or different actors.



  

 

  

Schedule
shedule_element ::= actor_instance_name | loop_element
loop_element ::= "do" SP uint_literal NL

shedule_element NL
{shedule_element}

"loop"
manual_schedule ::= "manual" SP actor_instance_name NL

schedule_element NL
{scedule_element} NL

"end"
auto_schedule ::= "auto" SP actor_instance_name NL
schedule_section ::= "scedule"

(manual_schedule | auto_schedule) NL
{(manual_schedule | auto_schedule) NL}

"end"

shedule
   auto a1
   manual a5
      a5
      do 3
         a6
         do 2
            a7
         loop
      loop
   end
end

We could have automatic or manual schedule. For each 
connected subgraph we should declare what kind of schedule 
we like to have. For manual schedule we should specify the 
execution sequence of the actors. The sequence specification 
could have loops.



  

 

  

Composite actor example

a2

i1

p1
o1a1

2

v1

s1

c1 1

3

1

1
11

4

;in fájl P.ctx
primitive P
   context
      input int[5] i1[2]
      input int i2[1]
      output float[3] o1[4]
      parameter long p1[1]
   end
end

;in fájl C.ctx
composite C
   context
      input float[3] i1[1]
      output int o1[3]
      output int o2[1]
      parameter float p1[1]
   end
end

;composite D
use P
use C
composite D
   context
      input int[5] i1[]
      output int o1[]
      parameter long p1[]
   end
   signals
      stream float[3] s1[]
      variable int v1
      constant float c1 3.14
   end
   actors
      primitive P a1
      composite C a2
   end
      

   topology
      a1.i1 << i1
      a1.p1 << p1
      a1.i2 << v1
      a1.o1 >> s1
      a2.i1 <1< s1
      a2.p1 << c1
      a2.o1 >> o1
      a2.o2 >> v1
   end
   schedule
;     manual a1
;        a1
;        do 4
;           a2
;        loop
;     end
      auto a1
   end
end

Here is a declaration of a composite component. It uses two 
actors and three signals. It has three ports. You could see the 
the interface declarations of the components used. They are 
included in the composite declaration by the two use sentences. 
It is important to note, that in the interface declaration we must 
specify the vector counts, because the compiler must know the 
production and consumption behaviors of the actors. In the 
composite declaration on the other hand we leave the vector 
count blank to indicate, that the compiler should compute them 
according to the schedule. In the comment lines of the schedule 
section you see a manual schedule which is periodic admissible 
schedule.



  

 

  

Implementation

● Compiler

● Assembler

● Binary code structure

● Running the dataflow

● Primitive interface

● Virtual machine

● Composite interface

Today I have an implementation with a working compiler, 
assembler and runtime system. They run under 64 bits Linux 
operating system. I have an implementation of the runtime 
system, which runs on ARM Cortex-M4 in bare metal mode and I 
have tested the virtual machine on PIC32.



  

 

  

Compiler

● Line oriented, each line is a sentence
● Sentences are built from words
● Sentence processing:

– scans for words
– parses the sentence
– checks the rules
– adds items to the dataflow graph

● Consistency checking of the graph
● Finding the connected subgraphs
● Scheduling the subgraphs

– solving the balance equation
– computing the schedule by simulation

● Output assembler source code

The compiler is line oriented, each line is a sentence. The 
sentences are built from words. The working of the compiler is 
the following. The compiler scans the sentences for words. After 
that it parses the sentences, checks the rules and build the data 
flow graph sentence by sentence. After the graph has been built 
the compiler checks the consistency of the graph and searches 
for connected subgraphs. For each subgraph the compiler 
solves the balance equation and computes the schedule. Finally 
the compiler emits the assembly language source code and the 
interface declaration of the component.



  

 

  

Assembler

● Assembler source code platform independent
● Binary code platform dependent
● Line oriented syntax
● Uses the same parser the compiler uses
● Two passes

– Scanning and parsing
– Binary code generation

● Assembler code allows different data flow implementations

The assembly language code emitted by the compiler is platform 
independent. On the other hand the assembler generate 
platform specific code. The assembler is line oriented too. It 
uses the same parser the compiler uses. The assembler is a two 
pass assembler. It allows different data flow implementations.



  

 

  

Binary code
● 4 segments: meta, code, data, context
● context segment: defines pointer offsets
● meta segment:

– symbolic information
– initialized data values
– code for loading component actors
– code for actor and signal instance creation
– code for deallocation resources

● code segment
– code for initialization
– code for scheduling
– code for cleanup

● data segment
– signals
– actor instances
– context structures

The binary code emitted by the assembler has four segments. 
The context segments specify the order of the interface pointers 
of the actor. The meta segment stores symbolic information and 
the code necessary to bootstrap the execution of the composite 
or the wrapup after the execution. The code segment contains 
the code necessary to run the schedule. Finally the data 
segments stores all the signals.



  

 

  

Running the dataflow

● Loading the top level composite's binary code
● Executing the component load code

– Loading all component actors
– Executing the component actor's load function

● Executing the instance creation (make) code
– Creating actor and signal instances, context structures
– Executing instance creation code of the component actors

● Executing the initialization code
– Initialization for scheduling
– Executing the initialization code of the components

● Executing the schedule
● Executing cleaup code
● Executing resource deallocation (delete) code

We run a composite in three stages. The first is the bootstrap 
stage. In this stage we load the components to be used if 
necessary, we create actors and signals and we initialize those 
signals and actors. The second stage is the running of the 
schedule. In this stage we execute the actors according to the 
schedule. The third stage is the wrap up stage. In this stage we 
cleans the actors, delete actors and signal and finally unload 
components if necessary.



  

 

  

Primitive interface

4

3

2

s1

s2

s3
double[2]

int[5]

float

typedef struct _ctxA1
{
   int  *i1;
   float *i2;
   double *o1;
}ctxA1_t;

void fireA1(ctxA1_t *ctx);

int s1[30];
float s2[4];
double s3[16];

ctxA1_t ctxa1;

i1

i2

o1a1

//initialization

ctxa1.i1 = &s1[0];
ctxa1.s2 = &s2[0];
ctxa1.o1 = &s3[0];

// fire a1

firea1(&ctxa1);

// increment context pointers

ctxa1.i1 += 3 * 5;
ctxa1.s2 = 2 * 1;
ctxa1.o1 = 4 * 2;

A primitive has six entry function. They are the load, the make, 
the init, the fire, the clean and the delete functions. The fire 
function runs the algorithm of the primitive. Each function get a 
single pointer. It points to a structure which contains the pointers 
to the signals connected to the actor ports. From the starting 
address specified by a signal pointer the primitive could reach 
the number of vectors declared in the interface declaration. The 
layout of the vectors are the same as the layout of a two 
dimensional array in C. The vectors are the rows of the array. At 
the beginning of an execution period the pointers are initialize to 
the beginning of the signal's storage buffer. After the execution 
the pointers are incremented according to the number of vectors 
used by the actor. Today we are not using circular buffers to 
reduce the storage size of the signals.



  

 

  

Virtual machine
vm_run(vm_t *vm)
{
   int *ip=vm->ip;
   static void *instructions[NR_OF_INSTRUCTIONS] =
   {
      [INST_FIRST] = &&inst_first,
      // ...
      [INST_n] = &&inst_n,
      //...
      [INST_LAST] = &&inst_last
   };

   goto instructions[*ip++];
   return;

inst_first:
   // the code for inst_first goes here
   goto instructions[*ip++];
// other instructions
inst_n:
   // the code for inst_n goes here
   goto instructions[*ip++];
// other instructions
inst_last:
   // the code for inst_last goes here
   goto instructions[*ip++];

   return;
}

The binary code emitted by the assembler should be executed 
by a virtual machine. The virtual machine is a threaded code 
virtual machine. It uses the labels as values feature of the gcc 
compiler. I choose this because it is more friendly to the 
processors branch prediction algorithms than the use of the 
switch statement of the C language. The labels stored in a static 
array defined inside of a C function. The array elements could be 
used for the target of a goto statement.



  

 

  

Composite interface

4

3

2

s1

s2

s3
double[2]

int[5]

float

typedef struct _dC
{
   struct _ctxA1
   {
      int  *i1;
      float *i2;
      double *o1;
   } ctxA1;
   struct _inst_a1
   {
      void **dseg;
      void **ctx;
   } insta1;
   int s1[30];
   float s2[4];
   double s3[16];
} dC_t;
typedef struct _fire_composite
{
   int instruction_code;
   int instance_offset;
} fire_composite_t;

i1

i2

o1a1

// from the vm_run function

   void **p, **data;
   void **context, **sp;
   int *ip;

fire_composit:
   p = data + *ip;
   *(--sp) = data;
   *(--sp) = context;
   (--sp) = (void**) ip;
   data = *p++;
   context = *p;
   ip = *((int **) data);
   goto instructions[*ip++];
ret:
   ip = (int *) *sp++;
   context = *sp++;
   data = *sp++;
   goto instructions[ip++];

The composite interface is similar to the primitive interface. It 
has the same functions that a primitive has.The composite gets 
a pointer called context which points to a pointer array of the 
interface signals. The invocation of the function is done by the 
virtual machine. The virtual machine saves the current context, 
data and instruction pointers into a stack and loads the new 
context, data and instruction pointers and continues the 
execution. The ret instruction restores the saved pointers.



  

 

  

M2

M1
A4
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Hierarchical dataflow

s1 s2 s3

On the slide there is a hierarchical composite. The top level has 
no input or output, so it could be run by the runtime system. The 
M1 composite has a nontrivial schedule. All the schedules have 
been computed by the compiler. The M1 has two subgraphs. 
The subgraph which contains the a1, a2, a3 and a4 actors is a 
connected subgraph in which the actors are connected by 
streams. The remaining three actors form a virtual subgraph in 
which the actors are connected through variables and / or 
constants or they are standalone actors. The purpose of such a 
subgraph is to implement some computation on control 
parameters. This subgraph is scheduled by a different algorithm 
and each actors are executed only once and executed before 
the other subgraphs. This subgraph could not has loops, we 
should be able to arange the actors in a topological order.



  

 

  

use A5
use A6

composite A4
context

input float[1] i1[]
output float[5] o1[]

end
signals

stream int[1] s1[]
end
actors

primitive A5 a1
primitive A6 a2

end
topology

a1.i1 << i1
a1.o1 >> s1
a2.i1 << s1
a2.o1 >> o1

end
schedule

auto a1
end

end

use M1
use A10
use A11

composite M2
context
end
signals

stream float[5] s1
stream float[5] s2
const int[1] c1[2] 1 2
const int[5] c2[1] 1 2 3 4 5

end
actors

primitive A10 a1
composite M1 a2
primitive A11 a3

end
topology

a1.o1 >> s1
a2.i1 << s1
a2.o1 >> s2
a2.p1 << c1
a2.p2 << c2
a3.i1 << s2

end
schedule

autoa1
end

end

This slide shows the declaration of the A4 and M2 composites.



  

 

  

use A1
use A2
use A3
use A4
use A7
use A8
use A9
composite M1

context
input float[5] i1[]
output float[5] o1[]
parameter int[1] p1[2]
parameter int[5] p2[1]

end
signals

stream float[1] s1[]
stream float[1] s2[]
stream float[1] s3[]
var int[3] v1[1]
var float[1] v2[1]
var int[1] v3[6]

end
actors

primitive A1 a1
primitive A2 a2
primitive A3 a3
composite A4 a4
primitive A7 a7
primitive A8 a8
primitive A9 a9

end

topology
a1.i1 << i1
a1.o1 >> s1
a1.p1 << p2
a2.i1 << s1
a2.i2 << v3
a2.o1 >> s2
a3.i1 << s2
a3.i2 << v2
a3.o1 >> s3
a4.i1 << s3
a4.o1 >> o1
a7.i1 << p1
a7.o1 >> v1
a8.i1 << v1
a8.o1 >> v2
a9.i1 << v1
a9.o1 >> v3

end
schedule

autoa7
autoa1

end
end

This slide shows the declaration of the M1 composite.



  

 

  

.meta
.name string "A4"
.version uint00000001
A5.n string "A5"
A6.n string "A6"
a1.n string "a1"
a2.n string "a2"
s1.n string "s1"
i1.n string "i1"
o1.n string "o1"
.load

ld.prim A5.n a1.n
ld.prim A6.n a2.n
meta.exit

.make
mk.prim.inst A5.n a1.n a1
mk.prim.inst A6.n a2.n a2
mk.buffer int[5] s1.n s1.p
meta.exit

.delete
meta.exit
.endseg

.context
i1 ptr
o1 ptr

.endseg

.code
exit

.init
cp.ctx.ptr a1.i1 i1
cp.ptr a1.o1 s1.p
cp.ptr a2.i1 s1.p
cp.ctx.ptr a2.o1 o1
init.prim a1
init.prim a2
ret
end.cycle

.fire
cp.ctx.ptr a1.i1   i1
cp.ptr a1.o1 s1.p
cp.ptr a2.i1  s1.p
cp.ctx.ptr a2.o1 o1
do 5

.l1
fire.prim a1
inc.ptr a1.i1  4
inc.ptr a1.o1 4
loop .l1
fire.prim a2
inc.ptr a2.i1  20
inc.ptr a2.o1 20
ret
exit

.clean
cp.ctx.ptr a1.i1 i1
cp.ptr a1.o1 s1.p
cp.ptr a2.i1 s1.p
cp.ctx.ptr a2.o1 o1
cleanup.prim a1
cleanup.prim a2
ret
.endseg

This slide shows the meta and code segments in the generated 
assembly code for the A4 composite.



  

 

  

.data
s1.pptr s1
s1 int[5]
a1 ptr
a1.i1 ptr
a1.o1 ptr
a2 ptr
a2.i1 ptr
a2.o1 ptr

.endseg

.meta
;catalog start

char 's' ;signature
char 'd'
char 'f'
char 0 ;platform
address .name ;name offset
address .version ;version offset
address .size ;object code size
address .code.offset
address .data.offset
int 0 ;reserved
int 0 ;reserved

;catalog end
;meta header

address .load
address .make
address .delete
.endseg
.code ;code header
address .fire
address .init
address .clean
.endseg
.data ;data header
ptr 0 ;pointer to .fire
ptr 0 ;pointer to .init
ptr 0 ;pointer to .clean
ptr 0 ;pointer to meta seg
int 0 ;make flag
int 0 ;reserved
.endseg

This slide shows the data segment in the generated code for the 
A4 composite and the headers inserted into the code by the 
assembler.



  

 

  

schedule
a7
a8
a9
a1
do 5
a1
a2
a3
a4
loop
a4

end

schedule
do 5
a1
loop
a2

end

schedule
do 3
a1
loop
a2
do 2
a3
loop

end

This slide shows the compiler computed schedules for the M1, 
M2 and A4 composites.


