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Summary-This paper discusses in some detail the scanning prop-
erties of planar and linear phased arrays consisting of a large num-
ber of equispaced radiators, either omnidirectional or directive. As-
suming that a suitable beam shape and sidelobe level in the broad-
side direction have been attained, it is shown how scanning of the
array through introduction of a phase delay into the wave front dis-
torts this pattern and introduces new sidelobes. The study uses con-
tour maps of the antenna pattern in "sin 0-space'," which is a projec-
tion of the unit sphere on the plane of the array. In this space the
antenna pattem remains invariant with scan angle and merely under-
goes a translation proportional to the phase delay between adjacent
radiators. Using a parallel projection of the unit sphere onto the plane
of the array, the actual antenna pattems are then readily obtained in
conventional spherical coordinates. This method also permits ready
evaluation of the influence of the directivity of the radiating ele-
ments, including a slight shift of the beam maximum with respect to
that of an array of isotropic radiators. Furthermore, a pictorial repre-
sentation of the coverage of a tilted planar array of given scanning
properties can be obtained in terms of an earth-fixed coordinate sys-
terr. Finally, it is shown how the beam-pointing error in a phased
array is related to systematic errors in the phase delay.

I. INTRODUCTION

PViECHANICALLY scanned antennas were em-
ployed almost exclusively in the radar systems
of World War II and are still being used in the

majority of all operational radar systems. However,
new requirements for radar systems, including rigidity
and shock resistance of the antenna structure, volumet-
ric rapid scanning of large antennas, and avoidance of
any mechanical motion in the radar system, have led
to an ever-increasing interest in electrically scanned an-
tennas in which the antenna stays fixed in- space and
the radar beam is moved by introducing a phase delay
into the radiated wave front. Such an antenn.a is called,
briefly, a "phased array." Its properties are well under-
stood and readily amenable to numerical and graphic
analyIsis.

Although the purpose of a two-dimensional phased
array is the same as that of a parabolic reflector in a
two-gimlbal mount, namely, to scan a radar beam, the
characteristics of these two antennas have some fun-
damental differences, thus making it impossible simply
to substitute one for the other in an existing radar sys-
tem. Phased arrays can provide scanning patterns and
scanning rates which are impossible to attain with me-
chanically scanned antennas. Conversely, a parabolic
reflector can be turned and tilted to radiate an identical

* Received by the IRE, October 30, 1959; revised manuscript
received, March 4, 1960.

t Bell Telephone Labs., Inc., Whippany, N. J.

antenna pattern toward every point in a hemisphere, a
task which is inherently impossible with a planar phased
array. Furthermore, the scanning properties of a me-
chanically scanned antenna are readily described in a
spherical coordinate system with its origin at the phase
center of the antenna, whereas scanning of a phased ar-
ray can be discussed more conveniently in a different
coordinate system.

This paper presents a brief review of the scanning
properties of phased arrays. The discussion is restricted
to arrays of equispaced radiators located in a plane.
Further, it is assumed that the variation of scan angle
0. of these arrays,' hereinafter referred to as "scan sec-
tor," is large compared to the beamwidth. This as-
sumption implies that the phased arrays consist of
many radiating elements, possibly 50 to 100 radiators
for a linear array and 2500 to 10,000 elements for two-
dimensional arrays.
The introduction of a phase delay across the wave

front radiating from an array has many consequences
besides the obvious shift of the beam maximum.

1) The beamwidth increases as one scans away from
broadside.

2) The beam shape changes slightly as one scans
from broadside to moderate scan angles and is
modified drastically for extreme scan angles close
to 90° from broadside.

3) New sidelobes may appear at moderate to large
scan angles.

4) The beam direction is slightly different from that
computed by standard formulas.

All these effects are well understood. They have to be
taken into account if one attempts to approximate the
precise performance of a mechanically scanned antenna
with a phased array. This discussion therefore deals
with beam direction, beamwidth, and beam shape as
functions of phase delay. Furthermore, the sensitivity
of array performance to systematic excitation errors is
reviewed.
As a result of this study, it is possible to state ac-

curacy requirements for the phase delay of practical
arrays. The capabilities and limitations of this type of
scanning antenna will be apparent, and techniques for
the design of such an array will emerge.

I The scan angle &, is defined as the angle between the array nor-
mal and the beam maximum.
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The deterioration of array characteristics with ran
dom excitation errors has received considerable atten--
tion in the literature.2' It is not to be discussed here
because it is believed that systematic errors, rather
than random errors, will limit the performance of murllilti
element phased arrays.

XVhereas mechanically scanied antennas are ade-
quately described by giving two antenna patterrns in
orthogotnal planes, this method of presentationt- is en
tirely unsatisfactory for a phased array whose pattern
chaoiges appreciably as the beam is scaIiled away fromn
the array normal. To appreciate fully the characteris-
tics of both linear and two-dimensional phasedc arravs,
their patterns must be studied in a hemisphere rather
than in two platnes, and a patterni representation which
permits the study of pattern changes as a function of
scan anLgle must be found Thus, the hemuisphere, rather
thani two orthogonal planies, becomes the preferred
space to be conisidered, and the planiar, rather thani the
linear phased arrav emerges as the principal object of
this discussion. In particular, the two-dimensionial array
of isotropic radiators is used to show the variationi of
beam position, beam shape, beamwidth, and seconidarv,
beams with phase delay. Directive radiating elemelits
will be introduced later to demXoinstrate their contribu
t'on to beam distortion1, sidelobe level, and beam-
pointinig errors.

II. Two-DIMENSIONAL PHASED ARRAYS OF
ISOTR(OPi( RADIATORS

Consider a two-dimenisional array of lItNAequii
spaced isotropic radiators in the xy plane (Fig. I)o The
radiators are excited by individual cuirretnts I,,,, anid
provisions are made to initroduce incdepenidenlt progres
sive phase delays in the x and y directionis, so that
the delay betweeni adjaceent radiators is 4'. and r1,
(radiaans), respectively. We wanit to examiine thie im(otioni
of the radar beam as a functioni of the phase delcays aind
to study the variationls of beami shape with the S(Can
angle. Henice, we are niot conicerned with the classic
problem of array theory whichi attempts to correlate
the antenna patterin with the complex excitationi co
efficien1ts Iml but we simply assunie that this problemi
has been solved atid that mieans exist to produce an ac-

ceptable amplitude pattern in the z direction normnal to
the array when all array elements are excited in phase
(*x= =O).

2 L A. Rondinielly, "Effects of random errors on the perforiiiance
of antenna arravs of many elements," 1959 IRE NATIONAL CON-
VENTION RECORD, pt. 1, pp. 174-189.

3L. A. Kurtz and R. S. Elliot, "Systematic errors caused by the
scanning of antenna arrays: phase shifters in the branch lines," IRF,
TRANS. ON ANTENNAS AND PROPAGATION, vol. AP-4, pp. 6196527;
October, 1956.

4D. K. Cheng, "Effect of arbitrary phase errors on the gain and
beamwidth characteristics of radiation pattern," IRE TRANS. ON ANs-
TENNAS AND PROPAGATION, vol. AP-3, pp. 145 147; Ju1ly, 1955.

R. S. Elliot, "Mechanical and electrical tolerances for two
dimensional scannin-g antenna arrays," IRE TRANS. ON ANTENNAS
AND PROPAGATION, vol AP-6, pp 114120; JanuLary, 1958.
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Fig. 1IPlanar array of eqtlisparced cuIrrenIt elem1ents

A. The Antenna Pattern

The ai-amplitude pattei-ii of ati array of isotropic radi-
ators is giveni bvi

41-I XI

where

(1)

A1, N nun1iber of eleinen-ts in \x ati( y (lirec-
tion'Is,

ImI7 amiplitude of excitationi coefficient,
d 2rd/Xo spacinig between radiatinig elemcnetts

irn radians,
o wwavelength in 1free space,

T tcos a£xcosaxS ,

cHos a, cos a,,,
cos a, cos ay directioni cosines of radius vector

specifying the poinit of observatioin.
cos ax, cos a,, direction cosinies of radius vector

specifying beam-ii m-aximiu.tm (scan di
~rectiori)

The conventional pattern represen-itation of this ar-
ray uses a spherical coordi-iate systen-i wtth az;inmuth
and elevation angles 0 aiid 0 (Fig. 1) These atigles are
related to the directioni cosinies as follows3

sin2 6 = C S ac , + cosewiI a

tan 0
cos a,, (2)
Cos a,

6 S. Silver, 'Microwave Aiitenna TIheory anid Design," M.I.T.
Rad. Lab. Ser., McGraw-Hill Book Co. Inc., New York, N. YV. vorl
12, pp. 104-106; 1949.
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After fixing the direction of the beam maximum by
specifying a.,, and a,, and computing As and 0,, from (2), Y- 2 Ndry S0 x sin y

one selects a plane ¢O=const and computes the pattern

Sa = f(0) (0,, 4.,7Os = const).

Similarly, one may compute the pattern >

Sa JQP) (0°, , 0°= const). /

Clearly, this pattern representation has two disadvan-
tages.

1) The pattern depends on the position of the beam
maximum Os, 4\ \l

2) The pattern representation is valid only for one
particular plane (4)=const) or conical surface
(0=const). Hence, a complete representation of
the antenna pattern in the hemisphere requires
many curves for many different planes.

Both these difficulties can be overcome by using the dif-
ferences of direction cosines r$ and -r as variables and
plottinig a contour map of the amplitude pattern, Fig. 2-Constant amplitude contours of the beam from

fQi-X, Ty) -Sa = 0 (So = const) (3) a uniformly illuminated M N planar array.

in direction cosine space.
Here we will assume that this particular contour is a 0.16

circle for M=N and an ellipse for M$N. It is interest-
ing to note that this assumption is justified in the case 0.15

of uniform illumination (Imn-Io). The amplitude pat- 04
tern of an M N array with uniform illumination7 is
given by 0.13 -

sin 'Md7r, sin 'Ndar(
Sa- 1XM sin 2drTx N sin 2drrY ( 012

The contour map of the main beam can be approxi -
mated by t 010 bB

sin x sin y
~~~~~~~0.09SaZ

x yz
0x =MdrTzx at

y = 2NdrTy. (5) 0.07

This map is'shown in Fig. 2. It is apparent that the con- -___\_i__-
tour is an almost perfect circle at the half-power point
but approaches a square as Sa approaches zero. Hence, 0.05 _
one may talk of a beam broadening in the diagonal.
This beam broadening amounts to less than 2 per cent 004
at the half-power point and may be neglected (Fig. 3).
Thus, the half-power beamwidth of a uniformly illumi- 003 _
nated square array (M=N) is given in T space by 0021

Co
2Ar= (6) ool

A/Xo

where Co=0.888 and A =Nd (aperture). 0ol 02 0,3 0.4 0.5 0.6 0.7 0.8 09 1.0
AMPLITUDE So l

7 T. D. Vr,aiis. 'Antennas." McGraw-Hill Book Co.. Inc.. New Fig. 3-Beam broadening of a uniformly illuminated planar array.
York,N. Y., h 4; 151 U%,1).1 11 Nv " - - . . ,vv s ,, ., I Iv v

York, N. Y., ch. 4; 1950.
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0.
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lFig. 4-Beamwidth of a Dolph-Tchebycheff array vs sidelobe level
Ls relative to a utniformly illuminated array of equal aperture.

For a narrow beamn array whose beam is oriented
normal to the plane of the array, 2AT can be interpreted
directly as half-power beamwidth in radians. The beam-
width is related to the sidelobe level of the array in
such a mana-ner that the beam broadenis wheni the exci
tation coefficients Imn are tapered to satisfy specific
sidelobe requirements. For a Dolph-Tchebycheff ex
citation function8 (Fig. 4), the bearinwidth can be ex-
pressed by

2 _ Cb\/ co

r-A'CO1AX) (7)

---- ARBITRARY SCANNING CONTOUR
--- SCANNING AREA

lFig. 5-Scanning in the conmplex T plane

single cortplex number T ancd locates the beam maxii
mum in the T plane by another complex number, F0+

T , cos a. + i cos ae,

TX =os a,, + i cos a, (9,

where Cb/Co expresses the beam broadening with respect
to uniform excitation and as a funiction of design side-
lobe level. Note that a design sidelobe level of 40 db
introduces a bearn broadeniing of 41 per cent for a given
aperture.

B. Scanning of the Beam

The direction of the beam maximumi is a function of
the two phase delays 4'6 and 41, so that the direction
cosines are proportional to the respective phase delays:

cosaxs =Z cos acsv' (8)

This fundamental property of phased artays makes it
desirable to discuss pattern shape and beanm motioni in
a coordinate system which has cos ax and cos a1, for the
two axes.

For ease of manipulation, let us then define a com-
plex T plane with coordinates cos ax and cos ay. This
permits description of the point of observation by a

8 L. B. Brown and G. A. Sharp, "Tschebyscheff Antenna Dis-
tribution, Beamwidth, and Gain Tables," Naval Ord. Lab., Corona.
Calif., NAV-ORD Rept. No. 4629; 1958.

where t -+ + (phase delay).
Similarly, we can define a complex Tr plane, which is

suitable for contour maps of the amplitude pattern, by
T - T3 T .+i_T8 (10)

The antenna pattern, which is a function of the comii-
plex variable rT, is invariant in the 7 plane. Scannting
the antenna by introducing the conlplex phase delay

-Q 46 i+ tsimply translates the pattern in space so

that the pattern centei mioves to 7,J=j/d, (Fig. 5). If
the phase delay is chosen so that: T8 > 1 the half
power contour moves outside of the unit circle and be-
comes itnagirnaryi.ey, unobservable.
Two definitions are helpful in discussing array prop

erties:

The scanning contour-a closed curve in the Tplane,
traced by the beam maximunm wheii the beam is
scanined through the largest required deviations from
the array normal (Fig. 5),
The scanning area the area whose bounidary is the
ou-ter envelope of all the half-power contours of the
maiii beam:n whern the beam is scanned along the scan
nmug conitour.
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COSa y
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MAIN BEAM * MAIN BEAM
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Q SECONDARY MAXIMA

Fig. 6-Secondary maxima of a scanned array with
one-wavelength element spacing.

C. Secondary Maxima

Let us now consider the effects of scanning on the
beam pattern. The first is the occurrence of secondary
maxima. An array of isotropic radiators has an infinite
grid of these maxima spaced rxo-To-yo=Xo/d. The larger
the element spacing, the closer the spacing of the max-
ima. Whenever the spacing is greater than Xo/2, these
maxima may become visible as they wander into the
unit circle with each scanning of the array. If the ele-
ments in the array are spaced one free-space wave-
length apart, the main beam and four endfire beams
will be visible at zero scan angle (Fig. 6), and any scan-
ning away from broadside will move a multiplicity of
beams over the hemisphere. For example, if such an
array is scanned by a phase delay 4i=(1+i)r, four
beams will be seen on the circle 0 = 45°. However,
narrower spacinig of the radiating elements (e.g.,
d = 2Xo/3) will essentially suppress all secondary beams
as long as | (Fig. 7).

Thus, the proper spacing of radiating elements is the
first step in eliminating secondary beams in the array
pattern. The second step is concerned with the proper
choice of radiating elements (see Section IV).

D. Scanning of a Phased Array in a Spherical Coordinate
System

All previous computations have been made in a co-
ordinate system which was fixed with respect to the ar-
ray, and it has been found that the antenna pattern re-
mained invariant in direction cosine space (T plane).

Fig. 7-Secondary maxima of a scanned array with
two-thirds-wavelength element spacing.

To examine the scanning characteristics of a phased ar-
ray in its associated spherical coordinate system (Fig.
1), we have to project the orthogonal coordinates
0= constant and k = constant onto the T plane. This
projection permits immediate interpretation of the an-
tenna pattern for any desired scan angle in terms of the
spherical 0, q$ system.

Expressing the complex direction cosine T in polar
coordinates

T = cos a., + i cos ay = sin 0(cos 4 + i sin 4),

T = sin Oei4, (11)

immediately yields the desired projection which can be
described as the parallel projection of the unit sphere
on the equatorial plane (Fig. 8). Each circle sin 0= con-
stant corresponds to two values of 0. Let us therefore
define 0.<.<r/2 as the positive hemisphere and re-
strict our discussion to it.

E. Scanning Distortions in a Spherical Coordinate System

The resolution of a radar system is limited by the
width of the radar beam. If this beamwidth depends oni
beam direction, then the resolution becomes a function
of scan angle. To illustrate the magnitude of beam dis-
tortion in a phased array, consider a beam which is cir-
cular at the half-power points in T space. If this beam
is scanned away from the array normal, it is then neces-
sary to differentiate between two beamwidths in the 0
and / directions, respectively (Fig. 9). The reference
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Thus

Ar
-BO = 02 01 =)2 si n-- I (radians)

WCOS -!I(02 + 01)/
(14)

Eqs. (12) and (14) can be simiplified for riarrow-beam[
anitennas in the usual manner, provided the scan angle
(0r0i+02)/2 is niot larger thani, savy 450 9

B0= 2Ar (radians),
2Ar Bo

Bo - (radians).
cOs (02 + 01) COS 0,

(15)

As the beam is scanned away from the array niormal, it
broadens in the 0 direction. Hence, its contour at the
half-power points changes gradually f -om a circle to an
ellipse.

F. Beam Eccentricity
The assumptioni in (15) that (02+01)/2 0, is maccu-

rate because the beam maximum is not centered be
tween the two half-power points at 02 adud 01. Thus, a
bearn eccentricity (Fig. 9) can be defined as

(02 2e) (0s 01)
2 e =

(02 s) + (O 6 01)
(16)

Use of a trigonometric identity and (15) as applied lo

02-s andL 0,-01, the two "half' beams, in (16) yields

2e = tan -4(01 + 02 + 20,) tan (02 01) (1)

As we are dealinig with a seconidorder effect, (17) ntay
be approximated by

.Bo
e tan 0,

8

Fig. 9-Beamwidth and eccentricity of the scanned beanii

beamwidth is defined as [Ff., (7) 1:

Bo 2 sin-' (Ar) (radians), (12)

where Ar = GbXo/2A. The beamwidth in the # direction

is constant and equal to Bo.
Wheni the beam is directed away from the array iior-

mal, then the beamwidth Bo in the 0 directioti is ob-
tained from

2Ar = I T! I sin 02 sin 0,.

(18)

Note that the ceniter of the beam moves relative to the
conltour by (Bo2/8) tan 0, radians. For a narrow beam,
this eccentricity is very small and may be neglected;
however, for a broad beam, it can be appreciable.

Additionial beam eccentricity is observed whetl the
isotropic radiators are replaced by actual radiating ele-
ments which exhibit a particular element patterti. his
effect is discussed in Sectiotn IV-A.

G. Endtre Beam

It has been shown that two phenornena limit the size
of the practical scan sector

1) the appearance of second-ary nmaxima,
2) the broadening of the beam.

Both effects suggest maximum scan sectors of the order
of + 300 (I 7-Fs |- 2). If an array with 2Xo/3 spacing is

9 R. W. Bickrnore, "A note on the effective aperture of electrically
scanntied arrays," IRE TRANS. ON ANTENINAS AND PROPAGATION, vol
AP-6, pp. 194 196; April, 1958.

cosay

-*Cosa x

Fig. 8-Projection of unit sphere on T plane,
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scanned this far from its normal, maximum beam broad-
ening in the 0 direction is about 13 per cent and second-
ary maxima begin to appear at 0 = 900. It is this ap-
pearance of secondary maxima which requires a brief
discussion of the beam shape close to 0= 90°.
The secondary maximum of an array of isotropic

radiators appearing at 0 =90' is, in effect, an endfire
beam directed parallel to the array. Its beamwidth in
the 4 direction is equal to B0, whereas its beamwidth
Boe in the 0 direction'° is obtained from (13) by noting
that 02= r/2 and 01= (ir/2) - Boe and that Ar, rather
than 2Ar, applies (Fig. 10). We obtain the following /e
approximation for a narrow-beam array:

B0e = V2Ar =/\Bo (radians). (19)

Thus, an array with a reference beamwidth of 1t
(0.017 radian) has an endfire beamwidth of Boe=7.50.
Should the secondary maximum move just one-half Fig. 10-Beam approaching endfire position.
beamwidth farther into the positive hemisphere, then
its beamwidth increases by 41 per cent and is given by
V\2B0. This substantial broadening of the endfire beam
shows the importance of suppressing secondary maxima
at 0 = 900 in a practical phased array through selection Z
of appropriate radiating elements.

III. SPECIAL CASES OF Two-DIMENSIONAL
PHASED ARRAYS 6

A. The Linear Array

The discussion of two-dimensional phased arrays (see /
Section II) includes linear arrays as a special case. Put-/-- ------
ting N=1 in (1), we obtain the amplitude pattern of a

xIl12 d 1m-
linear array of isotropic radiators, -12 d

M-1

Sa -E I| eidrmrT. (20)
m=0

cos a v
The contour map of the pattern of a linear array in di-
rection cosine space is just a grid of lines parallel to the
y axis (Fig. 11). In particular, the beamwidth between MAIN BEAM
half-power points is again given by

Cb,
2A\r. = A/S 2 t/2(7)

where A = Md (aperture). Scanning of a linear array cosax
means moving a strip of width 2Ar., across the T plane
so that

Txs = sin 0, cos -- (21)
dr

10 Consistent with our statement that we restrict our attention to
the positive hemisphere, the endfire beamwidth is defined as
B,=(7r/2)-01. Fig. 11-Linear phased array
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If we agaitn conifiie our attention to the positive
hemisphere, then the actual beam of a linear array of
isotropic radiators is a conical half shell. As the beamlr
is scanned away froim the array normal, the conie angle
decreases ancd the con-e contracts, much like an uI
brella being folded, until at 0=900 it becomes a sitngle
endfire beamni The discussion of the endfire beam in Sec-
tion II-G is readilv adapted to the linear array anld
secondary maxima have the same spacing as before,

TX)
d

but have the appearance of strips in the 7' plane (Fig.
12). Their suppressioni through proper element spacinig
and suitably chosen radiating elements is guided by the
considerations outlinied in Section 1I-C and Section IVi,

C. The Four-Beam Cluster
In conventional radar systems, a fourbeam cluster is

employed to obtain. nonopulse infornation." Such a
four-beam cluster can readily be formed with a phased
array by appropriate antenna feed structures with
multiple outputs. In a phased array the interpretation
of the signal obtainted froiti beamas A, B, C, D (Fig. 14)
must take irito account the tact that the beam cluster
cannot be rotated in the spherical coordinate systeni
Hence, the signals derived froeit (.1 C) and (B3 1D) pro
vide information relative to the 0 directioni when the
cluster is scanned along the x axis ( - 0). Irhe samre
beam conbination supplies information pertainitg to
the 0 direction when the Alusteti s scanined along the
y direction ((A=90'). Similar reasonitig applies to the
difference signals (A - B) anid (C D)

B. The Stacked Beam Book Co., Ii-vc., New York, N. Y.; 1959.
A two-dimetnsionial array of AM N radiators permits

formation of a stacked beam (Fig. 13) by applying a
multiplicity of fixed phase delays in the y directioni. The
stacked beam is then scanned by applying a variable
phase delay in the x direction. There is a close similarity
between the deformation of the stacked beam and of
the beam of a linear array as a function of phase delav
H's.Here again, the aggregate of beams can be coin-
pared to a folding unbrella. 7 t

coS ay

Fig. 12-Scatinning of a linear array with one-wavelength
element spacing.

Fig. 13-Scanniinag of a stacked bean-

F ig 14- Sc anning of a 4 beamt1 cluster.

I I

I I

I IiI

II
1. I
I !

MAIN BEAM

SECONDARY MAXIMA
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IV. THE RADIATING ELEMENTS

In general, a phased array consists of identical direc-
tive radiators adjacent to a large reflecting ground
plane. The pattern of such an array can be obtained by
multiplying the pattern of the equivalent array of iso-
tropic radiators Sa [see (1) J with the representative pat-
tern of a single radiating element Se, taking into account
the effects of the ground plane and of mutual coupling
between radiating elements. For the purpose of this
discussion, let us assume that it is possible to find a
single representative element pattern Se. This implies
that the array has many elements, thus providing a uni-
form environment for all elements except for a few at
the very edge of the array. As the latter usually receive
less illumination than the elements closer to the array
center, their contribution to the over-all pattern is
small.

Radiating elements assume many forms and shapes,
such as dipoles, slots, open-end and tapered wave-
guides, polyrods, and helices. The free-space patterns of
these radiators are reported in the literature and will
not be discussed in detail. Rather, the requirements of
an ideal radiating element will be stated, and the limita-
tions of phased arrays will be discussed when the actual
radiating elements fail to approximate this ideal.

First, the representative pattern Se of the radiating
element remains fixed in T space. It is, in effect, a win-
dow through which the scanned beam radiates into
space. The ideal element factor Se is therefore given by
S-=1 over the entire scanning area (Fig. 15) and Se <Ls
everywhere else (L, is the highest acceptable sidelobe
level).
Such an ideal pattern would permit scanning without

introducing any additional distortion and would sup-
press all secondary maxima outside of the scanning
area. In practical cases, the element pattern will drop
from Se=1 at 0 = 0 to a prescribed value, such as
SeO0.707 (3 db), on the scanning contour. It is highly
desirable to provide for a rapid decrease of Se to 0 out-
side of the scanning area and for Se =0 on the unit circle
(0= 90'). As an example, the pattern of a half-wave
dipole at a distance of Xo/8 from the ground plane is
shown in Fig. 16.

Other radiating elements, such as horns or polyrods,
can be designed to provide a better approximation to
the ideal pattern. However, these radiators may not
meet the fundamental requirement, namely, that their
physical size permits close spacing of the radiating ele-
ments to suppress secondary maxima.
A detailed contour map of the representative pattern

Se of the array elements is required to determine the
largest possible scanning contour (generally, the half-
power contour) and the necessary element spacing. For
example, the dipole pattern (Fig. 16) will permit scan-
ning to 40.5° and 48.5° in x and y directions, respec-
tively. This pattern has a sharp zero at 0= 900. Hence,
element spacing should- be close to Xo/2 to insure that

secondary maxima stay outside the unit circle even at
the largest practical scan angles.

If better radiating elements with steeper slopes of the
pattern outside of the scanning area are available, the
secondary maxima can be spaced closer to the main
beam, thus permitting wider spacing of the radiating
elements with attendant savings in hardware and cir-
cuitry. The theoretical maximum for element spacing is
obtained from

xo
d
= 2(sin 0, + Ar). (22)

,,r- SCANNING AREA

COS ay

COS alx

Fig. 15-Ideal element factor.

3DB CONTOUR
20DB CONTOUR

Fig. 16-Contour map of the pattern of a half-wave dipole located
one-eighth wavelength above an infinite ground panel.
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H[ence, in special cases where ounly a small scani alcale
is desired, considerable savings can- be realized byl de-
signing radiatirng elements which closely approximate
the ideal pattern. If, for examnple, a -degree beam-l were
scainned + 150, the radiating elements could be spaced
2Xo apart, provided that the element factor &S closely
approximated Fig. 15.

For linear arrays, which are scanned in the x direc-
tion, the radiating eleinents determine the patternl
shape in the y direction. Hlere, special requirements maxa
have to be met, such as a squared cosecant pattern.

A. Correction for Beam Direction

The beam direction of an array of isotropic radiators
was previously given [see (9) as

AT-

Fig. 17 Correction for bearmi direction-i of array
consisting of directive radiators.

sim t,eiSe =S7=

dr

It can be shown that the scan angle T, must be cor-
rected by a small quantity AT to account for the beam
distortion (Fig. 17) which is introduced by the pattern
Se of the iadiating elements. If S8 does not exhibit cir-
cular symmetry (e.g., if S, is a dipole pattern of the type
shown in Fig. 16), then AT is a complex quantity; i.e.,
it contains corrections for the 0 and 0 directions. If $e
is independent of O or is circularly symmetric, the cor
rection applies only to the 0 direction. Restricting this
study to the latter case, let us assume scanning alotig
the real axis, where T1 sin Q. The radiated arniplitude
pattern is given by

S $c e'. (23)

The correction for the beam maximum cani be found by
solvinag

dS

dT T=p,TAt
(24)

for AT.1 To simplify computation, the logarithmic pat
teriis F=log S, F, log S', and F, =log S. are iintro
duced. Then the first derivative of (23) is

F'(T) F,,'(T - T,) + Fe,'(T),

Thus, (26) permits ready evaluation of the correc-
tioil factor AT from measured or conmputed antennta
patterns. As an example, consider an airray where botlh
the array factor and the element pattet n can be approxi
mated by 5 =(sin x)/x. Using the logarith mic pattern

F =log sn xt-logx,

where x =Md7'/2, we hid

dF I
dT

= ---- (1- x cot x)dT T

d'F

dT2

(27)

(28)

(29)
T' sitJ

Using (29) to obtain the curvature of the array factor
at T£ O and inltroducing the bearrwidth 2Ar, fromn (6)
wre find that

F "(0)
N? 2.6

(30)
3TI (2AT") 2

The quantity Fi,"(0) is inversely proportional to the
square of the beamwidthi. Usiiig (28) to obta.in the slope
of the element factor at the half-power poitnt amd iiitio
dLuring the beamwidth 2ATr5 then

F,'(T,)(25)
t2

2Ari
(31)

where Ts is assumed constant. Expanding the rig:ht
hand side of (25) into a power series about 7s, we can
solve (24) for AT,

F,,'(T,) Fel (T,)
FT + F,"(,

Fall (0) + F/l(Ts) Fa l(°)

'T'he slope F,' is inversely proportional to thle bcam-
width. Thus the maximum correctcoto tci-ni AT,,,,,I

which applies to the maximum-ii sean angle, can be ex
pressed in terms of array and elenient beanmrmwmdth,

(26)

In general, the curvature of the element pattern F,"( T1)
is much smaller than that of the array factor F,"(O)
and may be neglected.

12 The minus sign is chosen because the expected shift of the beatn
maximum is toward the array normal, i.e., in the-direction of decreas-
ioig T.

(2A-r,)2
/ATrnsx C

2At.
(32)

For a narrow-beam array, A,, is quite smiall and of
the order of 1.0--8 to 104 However,m Aa,,,., increases with
the square of the beamwidth and canniot be ignored foe
phased arrays which have a relatively broad beam

Thus, the radiating elem-lents may introduce beam
distortioni, sidelobes, and a small shift in beamyi dire
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tion. It may be concluded that proper design of radiat-
ing elements for phased arrays is of crucial importance
to insure optimum performance. Despite substantial
information on free-space patterns of a large variety of
radiators, there is not yet enough information on the
representative patterns of such elements as part of mul-
tielement phased arrays, and further investigations are
needed.

V. ACCURACY OF PHASED ARRAYS

In this study, the accuracy of a phased array is de-
fined as the accuracy with which the direction of the
beam maximum can be determined and reproduced by
measuring and adjusting the phase delay between radi-
ating elements. Using the conventional method of ex-
pressing beam position and its accuracy, it can be stated
that the radiated beam maximum is determined by the
spherical coordinates 0±+AG and O/,±AO, with AO and
AO designating the 2cr-values of a normal distribution
around 0, and 0b. If the antenna were mechanically
scanned around two or more orthogonal shafts, it
would be reasonable to give values for AO and AO5 which
would apply to scanning throughout the- entire hemi-
sphere. It is readily seen, however, that no such num-
bers AO and AqO can exist for phased arrays. If it can be
assumed that all necessary phase delays between zero
and i/max can be produced with equal accuracy, then the
two direction cosines cos a.,, and cos a,, will have con-
stant tolerances but AO and AO will depend upon the
scan angle As. From Section II-B, we obtain

1 1
d(cos a,,,) = -- dix d(cos a,,) -d-y.dr dr

These statements can be combined into a single equa-
tion in the complex T plane,

1
dT = -d

dr
A small change in complex phase shift is given by

dt/ = di ei3.

(33)

(34)
The differential dT can be expressed as an arc dy on
unit sphere (Fig. 18) by rewriting it in spherical co-
ordinates

dT = d(sin 68eiO') = (cos 68d6 + i sin 63d4)eik, (35)

and computing dG and do

dO =

Cos (e - ) dI
dr cOs 68

sin (E - 0,)
di . (36)

d,. sin As

Fig. 18-Accuracy of phased arrays.

This result has the following significance:

1) Given a change in phase delay A4, in the 0 direc-
tion (E=e the beam motion is proportional to
A/ in T space. Hence, for relatively small 0G, the
tolerance A'y is proportional to Ai/. However, A-y
increases with HS as 1/cos As in exactly the same
way as the beam broadens (Section II-E).

2) Given a change in phase delay A~/ in the 0 direc-
tion (e=7r/2 +8), the beam motion along the
arc Ay is proportional to Ait and hence independ-
ent of the scan angle 68.

3) The tolerance A-y is generally smaller than the
tolerance A, because the constant of propor-
tionality 1/dr-=Xo/2wd is smnaller than unity. For
practical cases, 2 > 1/dr> l typically, 1/dr-4.
This implies that a systematic error in phase de-
lay of, say, IA#I' =t1 produces a beam-direction
accuracy of the order of 1 degree, or less than
0.005 radian. This accuracy is not so good as that
of modern, mechanically scanned antennas.

It is beyond the scope of this paper to discuss the de-
sign of accurate phased arrays, but we can point out
here that the main problem appears to be the develop-
ment of accurate methods to measure phase delay across
the aperture of an array and of feedback and conitrol
circuitry which permits precise adjustment of phase
shifters to the required values. Mechanical and elec-
trical phase shifters are available for introducing the
required phase delay.13-5 Both appear to be capable of

Then the tolerance for a phased array can be stated in
terms of the angle Ay:

Ay V(AG)2 + sine2 6j(P)2

- +/l + tan2 68 cos2 (e- 0b). (37)
dr

13 G. C. Southworth, "Principles and Applications of Waveguide
Transmission," D. Van Nostrand Co., Inc., New York, N. Y., pp.
325-335; 1950.

14 F. Reggia and E. G. Spencer, "A new techniqtue in ferrite
phase shifting for beam scanning of microwave antennas, " PROC. I RE,
vol. 45, pp. 1510-1517; November, 1957.

15 IF. E. Goodwin and H. R. Senf, "Volumetric scanning of a radar
with ferrite phase shifters," PROC. IRE, vol. 47, pp. 453-454; April,
1959.
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generating phase delays with allaccuracy of A+ 10

These phase shifters may be used in parallel and series
feed structures as well as in combinations of both
(Fig. 19). In a series feed, all phase shifts 4', are equal
to 4'; hence, programming is simple but errors in 4' show
up directly as beam-direction errors. In a parallel feed,
4i+i -h i/= 4; this implies that all 4' are different, requir
ing elaborate programming, but systematic errors in
4i have a tendency to compensate each other, at least
partially. Furthermore, phase shifters in a parallel feed
can be designed with considerably lower peak-power
rating than phase shifters in a series feed. Thus, each of
these feeds has its own peculiar problem with respect to
systematic errors, frequency dispersion, complexity, and
power-handling capability.

VI. SCANNING OF PHASED ARRAYS IN A GROUND
BASED COORDINATE SYSTEM

So far, the scanning characteristics of a phased array
have been described in a spherical coordinate system
which is fixed with respect to the array (Fig. 1). If the
array were horizontal and oriented so that its x axis
pointed north and its y axis pointed west, then the
same coordinate system could be used as a ground-
based system and the beam position and patteirn shape
could be interpreted immediately in terms of the angles
O and 4) of a ground-based coordinate system. In gen-
eral, this will not be the case, the array normal will be
inclined by an angle O,a from the vertical, and the plane
of the array will not be horizontal. In fact, if the array
were mounted on a ship or airplane, neither its x inior its
y axis would normally be horizontal. Then the interpre-
tation of beam direction in terms of a ground-based sys-
tem would require a rotation of the array coordinate
system through the Eulerian angles and a suitable co-
ordinate transformation to find the beam direction and
describe scanning distortions in a ground-based systemi.

This general case,i which is perfectly straightforward
but somewhat involved and cumbersome, will not be
treated here. But a simpler case, that of the ground
based tilted array, is giveln in some detail to show how
its scanning performance can readily be studied by a
parallel projection of a unit sphere belonging to the
ground-based system oni the P plane, which is fixed
with respect to the array.
As an example, let the y axis of the array remain hori-

zontal and point west. The array normal is then tilted
forward through an angle ffa so that the normal points
north (Fig. 20). The array coordinates are primed to
distinguish them from the coordinates x, y, z of the
ground-based system. Rotating the array in the xy
plane to obtain a principal direction (that of the z' axis)
different from north does not introduce any complica-
tions and therefore will not be considered.

16 H. Goldstein, "Classical Mechanics," Addison-Wesley Publish-
ing Co., Inc., Reading, Mass., ch. 4; 1950.

END-FEED
ANTE N NA

es WAVE FRONT

24I x 4 A4 6

PARALLEL- FEED A
ANTENNA I

Fig. 19Parallel-feed and series-feed anteinna systems.

Fig. 20 Coordinate systemi of a tilted planar array.

Let x and x' be radius vectors in the ground-based
and array coordinate systems, respectively

Then x and x' are connected by the orthogonal trans-
formations

x' Ax, (38)

X = Ax (3

October1726
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where the rotation matrix A is given by

Cos fz 0 -sin Ga
A-= O 1 0c

,sin Oa 0 Cos O"a
(40)

and A is the transpose of A.
Two computations can be carried out, noting that on

unit sphere

x = sin 0 cos 4

y = sin 0 sin c

z =cos 0

= cos ax,

= cos a.,,
= cos a.,

x 2 + y2 + z2 = x12 + y'2 + Z - 1. (41)

First, for a desired beam direction 0,, (p in the ground-
based coordinate system, the required phase shift. is
derived immediately from (38), (41), and (8),

- = cos Ga sin OE cOs 4) - sin ia cos 0G,
dr

SCANNING CONTOUR FOR
(42) 1 OF 4 ARRAYS WHICH

PROVIDE COMPLETE
COVERAGE OF A HEMISPHERE

Second, a mapping of the ground-based 0, system on

the T plane is obtained by expanding (39),

sin a cos = x cos Ga + z' sin 0a,

sin 0 sin = Y,
cos 0 = -x' sin 0G + z' cos G,a. (43)

Using (41) and rearranging terms, the equations for
lines of constant longitude and latitude 0 are, respec-

tively,

(yl cot XI- cos )2 = (1 - X y'2) sin2 0, (44)
(cos X sin a)2_-2 y2) cos2 a. (45)

The latter can be rewritten to show that the lines of
constant 0 are ellipses with centers on the x' axis (see
Fig. 21),

(x'+ sin Ga COS 0)2 yr2
+1. (46)

(cos 0G sin 0) 2 sin2 0

The north pole (0=0) is located at x' = -sin 0a,. We are

interested only in that part of these ellipses which cor-

responds to the projection on the positive hemisphere.
Hence, the intersection of these ellipses with the unit
circle is located at x'= -cos 0/sin fa-
The lines = const appear as ellipses whose main

axes are rotated with respect to the x' and y' directions.
By rearranging terms in' (44) anid applying addi-
tional algebra, the equation of an ellipse in polar form
(x'=-p cos e; y'=p sin e) is obtained,

1COS, (e - C-0)
1= ' + sin2 (e - o), (47)
p2 sin2 0a sin2

in which cot e = -tan q5 cos Oa.

Fig. 21-Mapping of a grounid-based spherical coordinate system
onto the plane of an array whose normal is tilted 450 from the
vertical.

The mapping given by (46) and (47) is very useful in
determining the optimum tilt angle and scanning con-

tour for a given scanning task. In general, a compromise
will be needed between the scanning contour which
gives the least beam distortion (see Sections II-E
through II-G) and the scanning contour which provides
the best coverage of the desired solid angle of the hemi-
sphere. In the case of a phased array whose normalt
points straight up (Fig. 8), a circular scanning contour
provides the best coverage. However, if complete cov-

erage of a hemisphere is desired, then the scanning con-

tours of several tilted arrays must be combined. If rela-
tively large scanning distortions are permissible, then
it is possible to cover the hemisphere with four phased
arrays tilted 450 (Fig. 21). In this instance, a maximum
scan angle of 450 would permit complete coverage to
0=700, down to 200 elevation, whereas a maximum scaln
angle of 600 would be required to cover all points down
to zero elevation. A circular scanning contour would
provide considerable overlap at the north pole. This
could be avoided by suitable programming of the phased
arrays to obtain triangular scanning contours.
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-= sin Gs sin ,S
dr
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