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Introduction

This writing is the 'verbal' companion to a series of animation programs that illustrate the
mathematics and practical outcome of a particular type of dome.

This particular dome was inspired by Buckminster?.
To construct this dome in the virtual world, we need to go through the following steps:

Top part of the dome

e Construct a sphere.

e Position a pentagon, lying horizontally and close to the top of the sphere, intersecting it
at about 9/10™ of the sphere's radius®.

e Position another pentagon, also lying horizontally but underneath the first one,

intersecting the sphere at about 6/10™ of the sphere's radius.

For one pentagon, draw the great circles formed by each successive pair of its vertices.

Do the same for the other pentagon.

Find out where the great circles intersect the 'equator’ of the sphere.

Find out where the great circles intersect each other.

Lower part of the dome

e Project the great circles onto a vertical cylinder that encompasses the sphere, touching
it. The great circles now become ellipses.

¢ Find the intersections of those 'great ellipses'.

e Find intersections of these great ellipses and some horizontal circles forming the base
and cutting at points where the above intersections occurred.

Total dome

e Take the top hemisphere of the great circles and divide it into equal distances.

e Take the lower part of the 'great ellipses' and bound it to a chosen value. Divide the
elliptical curves into equal distances.

e Join them.

As you can see, there's some geometry involved, and even some calculus at the end,
where we are required to calculate lengths along the sphere and cylinder. But overall the
maths is quite basic, in fact, that's the beauty of this project, it forces you to review
fundamental topics in mathematics, such as vectors and the polar coordinate system.

At the end of this document are some stills taken from 2 animations | developed using the
theory described here. The first animation just illustrates the sphere with its great circles

! See Bamboo Dome illustration at back of this document.
% Thanks to a friend of mine, Robert Oates, who alerted me to this system of using 2 pentagons to construct
the dome.
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and the cylinder with its great ellipses. This combination reveals a mathematical symmetry
that is aesthetically quite attractive (assuming that's the kind of thing that turns you on...).

The second animation illustrates the actual physical domes.

Knowing all too well that reading demands much more concentration than writing (just as
listening is much harder than talking), | try to keep the writing simple and clear, making a
gradual transition from topic to topic. However, some topics are worth exploring and some
extra attention may be given where it is not strictly needed.

Any constructive comments, critique, questions will be welcomed. Email me at
dbertels@utas.edu.au, or use the forum at my website www.ids.org/~dbertels

Read the following chapter carefully as it clarifies some fundamental definitions used in
this paper.
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Definitions

Great Circles

Great circles are circles drawn on the surface of a sphere, the only condition being that
the center of each of these great circles coincides with the sphere's center. Therefore the
radii of all these great circles are the same as the radius of the sphere they encompass.

Any two points on a sphere that are not antipodal (not positioned in a straight line with the
center) uniquely define a great circle.

Great circles are a universal (natural) phenomenon since the shortest distance between 2
points on a sphere is always a section of a great circle. This is why great circles are
extensively used in fields such as astronomy, aviation, surveying, etc...

Any two great circles intersect exactly twice.
Any three non-collinear points (not lying on a straight line) in space define a plane.

The two points defining a great circle, together with the origin of the sphere can be used to
uniquely identify a plane that cuts the sphere through its center. The great circle is
actually the intersection of this plane with the sphere.

Coordinate systems

The back page of this paper illustrates an example of a "ZYX" coordinate system.
However, while the orientation of the X, Y, and Z-axes are standard now in the
mathematics field, in more practical fields they often differ to suit the application they are
used for. The supplement shows the orientation and location of the axes used in this
paper. This particular configuration is chosen because it is the standard used by openGL,
the graphics library for the C++ programming language used for the animations.

Knowing the orientation of the 3D world you work in is fundamental. It is useful to get used
to the idea of 'up' as 'Y", 'right' as 'X', and ‘forward' as 'Z'.

Equations and descriptions found in mathematics literature often need converting to suit
the orientation of the world. . In the "Conversion to spherical coordinates” chapter, |
included the equations for a different coordinate system to demonstrate this. Generally all
that needs doing is replace the axes' names (X, Y, and Z) with the ones used in the
application.
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Vectors®

Assuming the origin of the sphere is known we can represent each point on the sphere by
a vector.

Given points P; and center O*, vector OP; has coordinates <xi, yi, 1>

Cross product

The cross product of 2 vectors is the multiplication of 2 vectors whose origins are at the
center. The result is a third vector perpendicular to the other 2. This perpendicular vector
uniquely identifies the plane (in 3D) where the original vectors reside in.>

Given the vectors OP; = <X3, Y1, Z;> and OP;, = <Xy, Y2, Z2>

The cross product of these two vectors result in a third vector,

OF xOF, = <y122 —4Y2 4 X = X125, XY, — ylx2>

Likewise for vectors OP3 = <x3, Y3, zz> and OP4 = <Xy, Y4, 24>

OP, xOP, = <y324 —L3Y4r LXKy — X3Zyy X3y, — y3X4>

For ease of notation, let

a=yz,—-13y, d= Y32y — 23y,
b=1zx,-x%2, e =2,X, — X3Z,
C=XY, = ¥i% f= X3Ys — Y%,

We can simplify the above to
OR xOP, =(a,b,c)

OP,xOP, =(d,e, f)

3 Refer to my document on vectors under the maths folder. This chapter contains some extracts from this
document.

* Note the difference in notation: A point in 3D is represented by the set of coordinates (x, y, z), while the
vector pointing from (0O, 0, 0) to the point (X, y, z) is represented by <x, y, z>.

® The cross-product is used in animation to determine the angle of all the surfaces so that lighting can be
applied proportionally. The technique is called 'normalisation’.
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Note: The length of the vector obtained by the cross product of OP; and OP; is

|OP, xOP,| =|OP,|*|OR;| *sin &

Where 0 is the angle between OP; and OP; intherange 0 <0 <n

The dot product

The dot product of 2 vectors multiplies the corresponding coordinates and adds the values.

Forvectors OA =(x,y,,z)  and OB =(X;, ¥, 2,)

OA-OB =xX, +V,Y, +72,Z,

Note that the result of the dot product is a real number (a scalar) and that its operation
symbol is a 'dot’. Contrast this with the cross product that results in another vector and
whose operation symbol is a 'cross'.

The dot product is used to determine the angle between 2 vectors.
OA-OB = |OA|OB|cos &

OA-OB

cosfd=———
OA0B|

In fact, we can think of the dot product as measuring the extent to which the 2
vectors are pointing in the same direction.

If OA and OB point in the same general direction,

OA-OB>0

If OA and OB point in the same general opposite direction,

OA-OB<0
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If OA and OB point to exactly the opposite direction,

6=n->cosm=-1-> OA-OB=-|OAOB|

If OA and OB are perpendicular (orthogonal),

0=n/2 > cosn/2=0 2> OQA-OB=0

It is this last property of the dot product that will prove to be useful to us.

Page 9 of 37



Intersections of great circles on a sphere Dirk Bertels

Equation of a great circle

Recall from the introduction that any 2 points on a sphere that are not antipodal uniquely
identify a great circle on that sphere.

To construct the equation that is valid for all the possible points on a great circle we go
through the following steps:

1. Draw the vectors from the center of the sphere to the 2 points:

OPl = <X1’ Y1 Zl>

OP, = <X2’ Yo Zz>

2. Draw the vector which is perpendicular to both these vectors®:
OP, xOP, =(a,b,c)

We can now define the great circle by stating that

If the point lies somewhere on the surface of the sphere and

If the vector formed from the center of the sphere to this point is perpendicular to the
perpendicular of the 2 original vectors, then this point is located on the great circle
defined by the 2 original vectors.

The 'perpendicular to the perpendicular' ensures that the arc formed by the 2 initial points
on the surface of the sphere rotates around the center point in right angles to the
perpendicular.

In mathematical speak, if OP, =(X,y,z) is a vector pointing from the origin of the sphere

to a point on the surface of that sphere, then according to the standard equation for a
sphere’

X +y +2°=r? (1)

And if 2 vectors OR :<xl, Vi zl> and OP, = (xz, Y, 22> are given to identify a unique
great circle, then the cross product of these vectors produce the vector perpendicular to
OP; and OP,

OR xOP, =(a,b,c)

® See the "Cross product" chapter to determine a, b, and c.
" In the supplement "Spherical equations”, r is represented by 'p' to distinguish it from 'r' in 2D
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If the dot product of this perpendicular vector with OPy proves to be zero, then the point
must be located on a plane cutting the sphere.®:

(ORxOR,)-OR,=0 > (ab,c)-(x,y,z)=0 > ax+by+cz=0 (2)

It is the intersection with this plane and the sphere that produces a great circle. In other
words, we need to solve equations (1) and (2) for x, y and z.

In order to plot the points of a great circle, we can increment the y values by a fixed
amount and use a procedure to determine the other coordinates. This way, y becomes a
known variable. To distinguish from the unknown variables, we symbolise the unknowns
with capital letters.

from (2)

aX +by+czZ =0

7 _—aX —by (3)
c

from (1)

X?=1-y?-Z7? (4)

(3)in (4) gives

—X—by2
X?=1-y?- a—j
(=

2

X2 =1 y? _(azx2 + 2abyX +b2y2]
c

C?X? —c® +c?y? =—a*X? —2abyX —b%y?

Rearrange to fit a polynomial equation...

(c2 + aZ)X ? +(2aby)X + (D*y* +C*y* —c*) =0 (5

8 |f the coordinates of the sphere were not taken in consideration, the equation of the great circle would
become the equation of the plane.
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Let ...

u=c’+a’
v =2aby

W=b2y2 +c2y2 _¢?

... then (5) can be simplified to

uX?+vX +w=0

with roots

_ —vAvi—4uw

B 2u

This of course enables you to find z, using (1)
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Intersection of great circles with the equator

(Special case for Y =0)

Gives coordinates for Great Circle at the equator of the sphere

; _—aX
C
X?=1-27?

Xz _1_(—3)( )2
C
a’x?

2y 2
X 14 x

7 =
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Second intersection at

You will note that the great circles of the pentagonl and pentagon2 cross each other at
this equator if both pentagons have the same longitudinal orientation.
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Equation of the intersection of 2 great circles

We use exactly the same procedure to define the second great circle, using the 2 vectors
OP3 :<X3’y3123> and OP4 =<X4,y4,24>
(OP,xOP,)-OR, =0 > (de f)(xyz)=0 > dx+ey+fz=0 (6)

It follows that if equations (1), (2), and (3) hold true, then the point Py is located on the
sphere and on both great circles, that is, we defined the necessary conditions for this point
to exist. We also know from the introduction that exactly 2 such points must exist for any 2
great circles.

Solving the equations

All that remains now is solving equations (1), (2), and (6) for x, y, and z

from (2)

(~by—c2) @)
a

X =

Substitute (7) in (6)

dx+ey+ fz=0

dw+ey+ fz=0
a
_@_dﬁ ey + fz=0
a a
a a

(ea—dbj (dc—faj
y =7
a a

dc - fa
ea—db
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h_dc—fa

= then =hz 8
ea—db y (8)

let

Substitute (8) in (7) and isolate z

(~bhz —cz) ,~bh-c

let g= _ then X=0z 9)

Substitute (9), (8), and (7) into (1)
X2 +y?+z%=r?

(gz) +(hz)’ + 22 =r?
22(92 +h? +1): r?

r2
2=t |
gZ+h*+1
r2
K= |
let g°+h?+1

The two great circles intersect at the points®:

(gk,hk,k),(~ gk,~hk,—k)

° As stated before, remember that 'r' which is a variable in 'k’ is represented by 'p" in the supplement.
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Conversion to spherical coordinates

If you're like me and hopelessly confused about geographical terminology, here's a
refresher:

Meridian
Great circle passing through both poles.

Latitude

The latitude of a point on earth is its angular distance from the equator measured upon the
curved surface of the earth.

Referred to as '¢' in the "Spherical Coordinates" appendix. It is the angle formed between
the point and the Y-axis.

Longitude
The longitude of a point on earth is the angular distance from a standard meridian (usually

through Greenwich) to the meridian running through this point.

Referred to as '0' in the "Spherical Coordinates” appendix. It is the angle formed between
the point and the YZ-plane.

P, = (latl, |0n1)

P, = (|at2, |On2)

In the "Y Points up, X points right, Z points forward" coordinate system (as used in the
supplement):

lat, = cos‘l(h—rkj

lon, = tan™ g_kj
k

lat, = cosl(_Thkj

lon, = tan‘l(_—kj
-k
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In the "Z points up, Y points right, X points forward" coordinate system®’:

4k 1 hk

lat, = cos 1&) lon, = tan 1@
4 -k 4 —hk
= = lon, =tan™ ——
lat, = cos ( ; j 2 .

Recapitulation

OI31:<X1,yl,Zl>
OPz =<X2’Y2’Zz>
OPs = <X3, Y3 Z3>

OP4 = <X4' Ya Z4>

a=yiz, -4y, d= VaZ,—Z25Y,

b=1zx,-x%2, 8= 2%, — X3Z,

C=XY, =YX f =Xy, —YaX,
_—bh—C hde—fa
T a ea—db

r2
K==
g °+h°+1
The two great circles intersect at the points:

(gk, hk, k), (= gk,—hk,—k)

10 Used in standard mathematical text books, here from James Stewart's "Calculus” ISBN 0-534-35949-3
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Example

Assume the circle has its center at (0, 0, 0)
To ensure we are working with the same circle, all we need to do is to make sure that the
value for 'r' remains the same.

For example take the arbitrary coordinate values -2, 3, and 2.
Switching the values and polarity of the coordinates ensures that 'r' remains the same. For
the coordinates given above,

rP=x2+y’ +2° =(-2f +3+22 =3+ (-2) +2° =17

r=+17

First great circle

Using the values given above,
OPF = <X1’ Y1 Zl> = <_ 2’3’2>
OP, =(X,,¥,,2,) =(3-22)

Determine the cross-product (orthogonal vector)

a=y,z,-7Y,=6+4=10

b=zx,-%x2,=6+4=10

C=XY,—YX=4-9=-5

OP, xOP, =(a,b,c)=(10,10,-5)

Equation of the plane containing the first great circle

ax+by+cz=0

10x+10y—-5z=0
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Second great circle

To facilitate testing the equations, we use one point of the first great circle plus a new one
that also adheres to the same radius. In other words, OP; = OP3 which should be showing
up as one of the intersection points.

OP, =(X3, ¥, 2;) =(-23.2)

OP, =(X,, ¥4, 2,)=(-2,2,3)
d=y,z,-2y,=9-4=5
€=12,X, — X2, =—4+6=2
f=Xy,—Y;X,=—4+6=2
OP,xOP, =(d,e, f)=(52,2)

dx+ey+ fz=0

5x+2y+2z=0

Point of intersections

ho dc—fa_ -25-20 3
ea—db 20-50 2

—bh-c -15+5
g: = =

-1
a 10
K= oz 17 _s
Vg?+h?+1 2 B
J @j +(-17 +1
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Therefore the points of intersection between the 2 great circles are
(gk,hk,k),(~ gk,~hk,—k)=(-2,3,2),(2,-3,-2)

Note the first of these are the same coordinates as those for OP; and OP5; as was
predicted.

Testing the Spherical Coordinate Equations

Refer to the supplement Spherical Coordinates also

Say for OB =(x,¥;,2,)=(-232)

r=p=+17
hk 3
lat = ¢ =cos™| — |=cos | — |=0.7559
/ ( P j (\/17j

lon=6= tan‘l(%kj = tan‘l[_—zz} =-0.7853

Therefore the spherical coordinates are

(p.6,4)=(\17,-0.7853,0.7559)

Reconverting to spherical coordinates using the equations given in the supplement:
Z=psingcosd = J17sin0.7559c0s— 0.7853 =2

X = psin gsin @ =+/17 sin 0.7559sin— 0.7853 = —2

y = pcos¢ =~/17 c0s0.7559 = 3

The spherical (3D polar) representation is especially useful in problems where there is
symmetry about a point, and the origin is placed at this point.
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Interesting points regarding distance on a sphere

Nautical mile

On a great circle, 1 minute of arc is one nautical mile.

The circumference of the earth is 360 * 60 = 21,600 nautical miles.

In meters, knowing that the mean radius of the earth is 6,370,000 meters, then one
nautical mile is

27 *6,370,000

=1,852.957889meters
21,600

nautical _mile =

This is just a little larger than the ordinary mile, which is

mile =1,609.3meters

Spherical Equation for a Great Circle™
The following is for the ZYX axes.

Given two points (laty, lons), (laty, lony), the great circle that contains these two points is
defined by points (latc, lonc) that satisfy:

lat = tan_{sin(latl)*cos(latz )*sin(lon, —lon, )—sin(lat, )* cos(lat, )*sin(lon, — Ionl)]
=

cos(lat, )* cos(lat, )*sin(lon, —lon,)

The lateral angle extends over a range of 1 PI, while the longitudinal angle extends over 2
PI.

Let theta (lonc) vary from O to 2x

| tried these spherical equations with negative results (though some wonderful swirls were
produced)....

View the document "Kaplan-Hart_Bridges_2001.pdf" (in dome physics directory). On page
7, fig 9, the middle 'near miss' represents our geohut. Note the comment that it had been
found in documents from Daniele Barbaro. La Pratica Della Perspettiva. 1569.

" copied from http:/nsidc.org/data/tools/spheres/GClntersect.html
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Knowing arc length of the pentagon and
circumference of the sphere, find the (vertical)
proportion of the pentagon's location to its radius.

Given

Circumference: 10.250
Top Pentagon arc length: 0.42  // Buckminster: 0.424647373
Bottom pentagon arc length: (2*160) + (610 * 2) = 1.54

Calculations

radius

r=C/2PI=1.631338

Pentagon 1

_arc_length
radius

7

042
1.630338

=0.257457

T

2
length _chord1=/2r*(1-cosé@) = \/Z(ZEJ *(1—cos@)

2
length _ chord1= \/ 2(%j *(1-c0s(0.257))

27

length _chord1=0.418840985

Pentagon 2

0= 54 0.94401028
1.6313

2
length _chord2 = \/ 2(%) *(1—cos(0.944))

27

length _chord2=1.48345114
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Radius of the circle circumscribing the pentagon

phi = 1.618034

side = radius _ pent./3— phi
side

43— phi

0.418840985
43— phi

1.48345114

+/3— phi

radius _ pent =

radius _ pentl= =0.356287423

radius _ pent2 = =1.261898911

Ratio between the sphere's and pentagon's radii

. pentagon_ radius
ratio= -
sphere_ radius

ratio_ pentl= 0356287423 _ 0.218401941
1.631338

ratio_ pent2 = 1.261886 =0.773536068
1.631338

Adjust to the parameters needed to instantiate the object

If for a sphere radius r, the pentagon radius is x, then this means that the cos of the angle
0 in the figure is x. Therefore,

0 =cos™ x 4 =~

From which we can calculate y, y J 0
>

y=sind
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For Pentagon 1: & =cos™ ratio_ pentl=1.35061975
y =sin g =0.975858899

For pentagon 2: @ =cos ' ratio _ pent2 = 0.686394442
y =sin@ =0.633752279

Calculations for Buckminster version'?

For radius = 1:

PENTAGON 1

Arc of top pentagon = 6 =0.26030616

length _chordl=+/2r?(1—cos@) = 0.259571858  (X)

length _chordl

10 _0.220805011 (V)
\/3- phi

radius _ pentl=

@ =cos " ratio_ pentl=1.34815655
y =sin@=0.975317972

PENTAGON 2

Arc of lower pentagon = ¢ =0.94698656

length _chord 2 = ,/2r*(1-cos @) = 0.911996026

length _chord?2

\/3— phi

radius _ pent2 = =0.775790157

@ =cos " ratio_ pent2 = 0.682829945
y =sind =0.630990991

2 5ee Bamboo Dome illustration at back of this document
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Graphically producing the great circles.

Refer to geohut.c in the geoHut project™.
Assume the sphere's radius 1.

Earlier on we calculated the coordinates of the 2 pentagons positioned horizontally on the
surface of a sphere. Every one of these points (with coordinates x, y, and z) can be
represented as a vector with radius r pointing from the center of the sphere towards that
point.

We then took 2 consecutive vectors (points) of one pentagon and found their common
perpendicular vector by applying the cross product operation to them.

This perpendicular vector, let's call it P1, has its origin in the center of the sphere and has
a length dependent on the angle between the 2 pentagon vectors.

P1 is the rotation axis around which we will rotate to produce a great circle.

(program: P1 = <xa, ya, za>)

We normalise the length of P1, effectively making its length 1.

Take one of the pentagon vectors, call it V1, and cross product it with P1. Normalise this
third vector and call it P2.

Now we effectively created a right-handed 3D axis system.
(program: V1 = <xn, yn, zn>)

(program: P2 = <xn2, yn2, zn2>)

Letfori=x,y,zinturn...

Vi be the Pentagon's vector
P1j; be the vector perpendicular to the 2 consecutive Pentagon vectors
P2;; be the vector perpendicular to Vj and Py

Then
ForO0<0<2n

Plot the Great Circle with

GCpjy =Vjjcos0+P2 sing

13 Not publicly available as yet N2
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Note that this equation is based on the equation for the circle

XC0sO+ ysin 6 =r

Intersection of the great circle with the equator of the sphere

Building on this knowledge, we can derive the rotation angle for when the great circle cuts
the Y axis. For then

GC[ :VM cosf + PZM sind=0

y]

VM cosf = —P2Msin 0

0= tanl(mJ
P2y,
Feed this angle back into the initial formula

GC[l] :V[i] cos@ + P2m sin@

Intersection of plane with the cylinder

The cylinder is a less complex object than the sphere, and this is reflected in the
mathematics... A simple combination of Cartesian with Parametric equations is all that's
needed.

For the plane

aX +bY +¢cZ =0 (1)
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And the cylinder of radius 1,

Z?+ X% =1

The projection of the great circle on the ZX (horizontal) plane is represented by**

Z=cost X=sint 0<t<2r (2)

Derive Y from (1),

_—cZ-aX
b

Y

Combining (1) with (2),

Z =cost X =sint Y=_CCOSt_aSInt 0<t<2r

b

Interesting observation

It doesn't matter whether the cross product vector <aX, bY, cZ> was normalised or not.
The results are the same.

For Y = 0, we already know the values of X and Z know from the great circle / equator
intersection. In the program, the results are stored in xmid and ymid

So

Z = zmid = cost
X =xmid =sint

v — —Cc*zmid —a* xmid
- b

Therefore

t =acoszmid = asin xmid

4 See "Calculus" 4™ edition by James Stewart - ISBN: 0-534-35949-3 pp 873
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Intersection of 2 curves on the cylinder

Equation for curve 1, for 0<t <27

Z =cost
X =sint

V1= — C COS tb—asmt

Equation for curve 2, for 0<t<2rx
Z =cost
X =sint

vo_= f coste—dsmt

At point of intersection, Y1 =Y2

—ccost—asint - f cost—dsint
b - e

—eccost—easint =—bf cost —bd sint

(bf —ec)cost = (ea—bd )sint

_sint  bf —ec
cost ea-hd

t= tan‘l( bf —ecj
ea—hd

Feeding this value of t in any of the 2 equations will produce the coordinates of
intersection.

fant
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Calculations needed to construct the dome

The remaining challenge is to give (Y) boundaries to both the spherical and cylindrical
great circles and to divide each great circle section into equal parts so that the dome can
be constructed from objects of equal size.

Also, we need to know the distances between points of intersection.

Calculate intersections to locate the lower rings.

The location of the upper and lower pentagons is optimised so that the whole of the dome
can be constructed using 3 different lengths.

The sphere's great circles
We already determined where the great circles cut the equator.
Also, the great circle sections are subdivided equally in radians.

The cylinder's great ellipses

Subdivisions of the great ellipse sections are not equal.

Need to determine the intersections to find a suitable lower (Y) boundary for the base of
the dome.
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Defining a 3D curve in Polar coordinates

This section is not complete yet, though all the major equations are formalised.

Generally, for
ast<b

And vector equation
r(t)=(f(t)g(t).h(t)
Or, equivalently, the parametric equation

x=f(t)y=g(t)z=h(t)

The arc length of the curve is

L= [\ OF +[o'@F + [ @Fot

&S (&3

For the parametric equation

L= t—asint .
r(t)=sinti+ ccosb aSINL 5+ costk

Using the product rule,

d—y(— cost —asint)*b—(-cost—asin t)*ﬂ(b)

r'(t)=costi + =

Jj+(=sint)k

r'(t)= costi +Mj+ (—sint)k
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P (t) = \/(cost)z +[csin t— acost]2 +(osint)

b

(M) = \/(cost)z +[(csint)2 +2(—acos'l[;2<csint)+(—acost)2}L(_Sint)g

Since  (sint)’ +(cost)’ =1

b2

2( - 2 - 2 2
|r'(t)|:\/1+(c (sint)’ —2accost*sint +a’(cost) J

2 2
Ir'(t) = \/1+%(sint)2 —%costsinu%(cost)2

Convert to a polynomial form

then

Ir'(t) = y/u(cost ) + 2wcostsint +v(sint)’
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Supplement - Spherical Coordinates

Standard representation of a point using spherical coordinates

Following diagram illustrates that a point in 3D space can be described by 2 angles. Note
that some textbooks may interchange X, Y, and Z, but this does not alter the logic. The X,
Y, Z configuration used here is the standard used in the OpenGL Graphics library and
therefore relates to our discussion™.

Y
A
P 191
/'o (p,6,9)
’
latitude —— 7, P
d)i/
2 r——
0
v - longitude X
In the Y-r plane In the Z-X plane
y=pcosp (1) z=rcosd (3)
r=p sing (2) X =T sind (4)
Spherical to rectangular Rectangular to Spherical
z=psing cosd (2, 3) b = cos™ (y/p)
X =psingsind (2, 4) 0 =tan™ (x/2)

y = p COS$ )

15 All equations have been checked and confirmed
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Illustrations

Following images are some still images taken from my C++ animation demonstrating the
great circles on cylinders and domes.

Animation Images Dirk Bertels
Hobart 2005

Geodesics projected on to a Cylinder
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Animation Images Dirk Bertels
Hobart 2005

Geodesics formed by 2 Pentagons
projected on to a Cylinder

Print-outs
Version 5 produces print-outs Intersections

based on the user's input data
Some of the calculated data: e — Right:
Coordinates for the 2 pentagons | = Intersections for Pentagons
Coordinates for the intersections located at the ratios determined
Lengths between intersections = S ; ller:
atc.,. o . by mr. Buckminster Fuller:

: = s Pentagon 1: 0.9753179550
Pentagon 2: 0.6309909821

""" s a kb ) Below:
— i f = S Intersections for the 2 Pentagons
o= i B IS = positioned at random locations
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) Bambon grows fast, is free material for'a dome framework. 1t might be possible to suspend 1
1emt skin ar mosquita netting inside, or pull a s!m&h clath over the outside and shoot
. Tools: 3 pocket knife and string. The weTe i by R,
Buckminster Fullier. We haven't tried such a dome yet.
DOME ASSEMBLY
1"-\! eodesic dome, ax sHown in the asiembly didgroms, contning fwas dafffreufmmrs
i Jodud hich pecirs a1 the vertices of all the pentagons jurmed, and an "R " joinl
wm:n occurs al all other poinis,

The spans from joini to foint are BE, BR, or RR. The arc factors of these lengths are:
BB = 26030616, BR = 31030984, Rﬂ' =. 32636688
For these factors, the radiue of the doma iz 100, To construct ¢ 22° dome f“ mdnu}

lengths af the arcs wauld be as follows: BE = 286 BR = 3,41, RR =

CUTTING» G THE Mm

There ure only two different lengths of members wsed in the ercction -

a 5f8 dome, 80 "B members and 90 "R members ore required.

4 line of eolor can be droun ground the baomboos memberr ot 2ach measuring poial,
blice for the "B" points and red for the "R" poinis.

cHOSS Am‘!;\

¥

B Ymerhers  The "R™ rass consists of two "R membery
whose Lingths are: WAlB plus Wik plus whose bengths are: BBR plus SKK plus
12" extra at cach end, 12" axtra at each end.

Wit 12" extra om the end of each stick, there I be s 79" sverlap when the crosses are
atsembled

U

SGAE NI GPET P s TR fa
12" extra at cach end.
With 127 exgra on the end of each stick, there W be a 24" overlap when the crosses are

i crembled.
CROSS TYING

1

Place mewmbers af right angles to cach other and tie firmly, but not tog light. During
aembly of the dome, the crosses will twise dite proper position as shown.

In all cascs, when looking af @ cross with the wente angles at the sides and the obluse

angies at the top and bottom, the member going from upper right hand corner to the
dower left hand corner ..mmys jpasses aver LZ“; ather member.

sTaGE & AsSEMBLY

The fiest stage in the assembly of the dome i the construction of the pentagon af
the lop of the dume, This process employs five I'R™ croses. :

Step A2 Tie together fwo VB crosses as shown in the
diggrans. Note that the end measuring pomis have the
same designation as the cross to which they are connected.

Siep B: Add twe more “B" crores in the same manner
wa i in shep Ao

Step C: Add fiftk “B" crods between the untied lege. In
order o dnsert this crass, all crosses will be twisied so that
) o regulur pentagon is formed.

STAGE % ASSEMBLY
The second stage consisty of closing the five trisngles around the pentagon. Use five “R™
Eroues,

Agein, the end measuring poinis always kave the same designation s the crass o which
they are connected

Al this point, the straciure will tend to bow. Turn the figure 5o that it is concace
dowmniard ”

Dirk Bertels

: mF T ;
Lift mm:mﬂtd_ﬁgwa a,'f the ground o facilitate the udd'ltwn af new crose:
Sfise bi-ped propr. Each prop consisis of fwe bambog sticks about seven feet long, tied - |
together near the top with a cord about a foot I Thesz props will then support the -
dome af equidistant points from its apex; first at the five vertices n,'m mppnupn, ¢
leter, at five ‘empnndn\g Points on the lop i fn Mngam 5

emeeB4

) the Eree - v
nﬂo{y added

dudwan. The rest of the di
u“ﬂ'lcmrm chﬂ* on

For third stage use ten "R
will htlhnmbyakﬂwyﬁl
crosses by a double tine,

LT
 The faurth stage uses five “

':muu which ¢lose the five hmm-

The fifth stage uses ten "B crosses to close ten iriangles. Six of these crosses con be
seen in the olovation above. - P

The fifth s uses ten "B crosses o clase len iriangles. 51: njﬂut ETOEES mm bt
seen in the slevation above. o

band. We now have o 3/8 dome.

eTAGE 1,6

i -

-+ [ i e
£
"“"-.._
/___5-;
i o J;
of N
pTOPVIEWT

To complets the 5/8 dome requires two stoges. The seventh :nwr uses ten “R " crosses

und the eighth stage uses ten “R™ crosses and ten “B” crosses.

O the last twenty crosses, all members pointing towards the ground u..mrd be cut off 1
12" from the cross” central point.

EES —EoH

Tl sinth $tage lises ten "B crossed n-.nd nu M erpsses bo complete il jiesd ﬁvn_un_g.._




Intersections of great circles on a sphere Dirk Bertels

Following figure was taken from http://www.boeing-727.com/Data/fly%20odds/distance.html . This is a good
web site to explore because of its practical nature.
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