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Phased Array AntennasArray Antennas
introduction 

• Phased array is a directive antenna made with individual 
radiating sources  (several units to thousands of elements). 

• Radiating elements might be: dipoles, open-ended waveguides, 
slotted  waveguides, microstrip antennas, helices, spirals etc.

• The shape and direction of pattern is determined by relative 
phases  amplitudes applied to each radiating element. 

• A phased array antenna offers the possibility to steer the beam 
by means of electronic control (a dedicated computer is 
required).
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Different types of phased arraysDifferent types of phased arrays

The collection of radiators can be on any of the following 
different type of surfaces, such as:

• LINEAR ARRAY: 
Elements arranged on a straight line in one dimension

• PLANAR ARRAY:  
Elements arranged on a plane in two dimensions (rectangular, 
square or circular aperture) 

• CONFORMAL ARRAY: 
Elements are distributed on a non planar surface
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Applications of Phased Arrays
• Ground based multi-function radar for military use

• Airborne radar for surveillance (RBE2) 
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Application continued

• Spaceborne SAR and communications for remote 

sensing

• Recently for radio astronomy
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Linear array radiation pattern

• Phase shift between adjacent 
sources: 

Ψ = 2 . π .(d/λ) . sin θ
( θ = angle of incidence)

A linear array is made of N elements uniformly fed,
spaced by a distance d
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For scanning the beam

Typical scanning angle  ±600

Typical gain losses G(a)  =  G(O°) Cos a
Half power beamwidth θ3dB(a) = θ3dB(a)/ Cos(a) 
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Principles for beam scanning

Phase Shift
( also Freq Scan) 

Time delay

Fix Variable (very wide 
instantaneous bandwidth €€€)

Single Beam Multiple beam (Rotmans Lens)

OR combination of phase and time delay
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3db Beamwidth and scanned 
beam for a linear array

• Radiation Pattern Characteristics

e.g. Radiation pattern for a linear array of N elements with d/λ = 0.5:

- half power beamwidth:  Θ3dB  = 102°/N         0r (Θ3dB(θ) = 0.88/(d/λ) in radians

Θ3dB(θ) = Θ3dB(0)/Cos(θ) 

- First side lobe 13.2 dB below the main lobe 
- when directive elements are used, the resultant pattern is the product of 

the array pattern Ga(Θ)by the individual source pattern Ge(Θ). 

G(Θ) = Ge(Θ) x Ga(Θ) 
Ge(Θ) = element factor
Ga(Θ) = array factor 

Gain G = G(Θ ) x cos(Θ)
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Gain as a function of scan angle
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Linear array radiation pattern
• GRATING LOBES:

• |Ea (θ)| is maximum whenever sin θ = ± nλ/d
• Main lobe at sin θ = O 

Other maxima are grating lobes:
- Grating lobes are undesirable and must be avoided 
- they appear for n = ±1, ± 2, etc... 
- for d/2 = 0.5 - sin θ >1 - no (real) grating lobes
- if d/λ = 1 grating lobes appear at θ = ± 90°

To prevent grating lobe, the element spacing d must satisfy: 
d/λ ≤ 1/(1+Sin θ max)

Pattern for n=10 @ d/λ = 0.5

Grating lobe 
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To re-cap - the avoidance of 
the grading lobe condition:

To prevent grating lobe, the element spacing d must 
satisfy: 

d/λ ≤ 1/(1+Sin θ max)

• Some new definition have been introduced recently:
– Dense Array if d/λ < 0.5 
– Sparse Array if d/λ > 0.5 

• Personal opinion is that there is no need for a new definition as 
the above condition explains everything.

• To avoid GL ‘completely’, we must keep d/λ ≤ 0.5 for ALL 
frequency 

• Sparse array already has a different meaning in array antenna 
design terminology (thinned arrays, density tapered array etc)

• The conditions hold for planar geometry also
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Planar Array radiation pattern
• The radiation pattern of a two dimensional planar array can be written 
as the product of radiation pattern in the two planes which contain the 
principal axes of the antenna: 

G(θa,θe) = G1(θa) x G2(θe)  (array separability: f(x,y) = f(x) * f(y)

• Normalised radiation pattern of a uniformly 
illuminated rectangular array:

N = No of elements in θa dimension with d spacing
M = No of elements in θe dimension with d spacing

Comments:
• Equations used for modelling arrays but no account of mutual coupling is included
• In the design phase mutual coupling must be included otherwise radiation patterns will   

degrade and will have a poor match. 
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Array distributions

• To design an array with lower sidelobes we have many 
different types of array distributions available to us. e.g.

• Uniform – simplest with first sidelobe level at about -13 dB

• Dolph - Tchebyschev – all equal sidelobes at any level

• Modified Sin x/x distribution  - 1st sidelobe is specified (Taylor one-
parameter distributions 

• Taylor n-bar distribution ( specified no of equal sidelobes)

• Taylor circular Aperture (2 – D arrays)

• there are many others….. (See Hansen – Phased array Antennas, Wiley)
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Examples of different distributionsExamples of different distributions

Example of Dolph-Tchebyscheff
@sidelobe level of -20,  -30 and – 40DB

Example of Nbar Taylor distribution 
@ n bar =2 , -40db
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So exactly(≈) how do we design 
a phased array? (1)

We will consider the case for Embrace design

• Start with the size ( or Θ3dB(θ)  requirements or gain
– We require approx 1m x 1m tile ( or in λs) and many hundreds of tiles 

» (as we had done before for ThEA)
– The size also gives us an idea for the analysis of the phased array 

(finite or infinite)
• How do we fill this aperture?

– We need scan requirements 
» Astronomer normally say ‘all the way down to horizon’ i.e.  ±90 deg.

• Consider the frequency range of operation
– Highest  and lowest frequency 

» (For Embrace we chose about 1550MHz to 400MHz)
– Determine spacing such that scan requirements are met at the 

frequency of operation

• It is these parameter you have to optimise for  - Normally !!!
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So exactly(≈) how do we design 
a phased array? (2)

• For Embrace we also had to optimise for cost!
– For cost optimisation, we sometimes over design or under design slightly, 

(negotiate the performance)

– As Embrace is a ‘demonstrator’ – there was no need to stick to the numbers 
produced on frequency and scan req’t so rigidly.

–
• ( Scan up to 90 deg and up to Neutral Hydrogen frequency – 1421MHz)
• λ/2 at 1421 MHz = 21/2 = 10.5 cm i.e. about 9 el x 9 el
• We chose 8 el x 8 el which gives 12.5 cm spacing in  1metre.
• 12.5 cm spacing gives scan of up to between 40 and 45 degrees at 1421 

MHz
• We considered this acceptable. (Dense, Sparse, closely packed ??? etc.) 

• Sometimes there are additional parameters which also needs to be
considered for optimisation. 
– Weight ( Not considered here)
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Analysis

• Once you have approximate dimensions, you need to 
analyse with correct software

• Determine exactly what you want out from the 
software e.g. for a phased array, designed on an 
infinite array basis, one needs the VSWR (reflection 
coefficient) v Scan and Frequency.

• Use only the verified the software. (or write your 
own but verify extensively.)
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Comments:Comments:

• Must not ‘overdesign’ too much otherwise it will be 
costly 

• Significant cost reduction will come from a proper 
design

• Continue to make ‘sanity’ checks at each level

• Let’s see how we have used these comments for 
Embrace design
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Antenna concepts
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Baseline design of the radiators
• Design Vivaldi with a stripline feed configuration 
• Similar design to THEA – safe approach
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Verification of Simulation 
software
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Simulated performance for 
Vivaldi with Stripline feed 

(Embrace)
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Actual tile
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Measured 8 x 8 Array
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Smith Chart

Normalised to feed line
impedance:  70 ohms

0.3 – 1.4 GHz

H-Plane 0° - 45°

E-Plane 0° - 45°
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Migration to Low cost and 
Dual polarisation

• Single sided Vivaldis and a microstrip feed
• Simple construction and low cost
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Simulated performance for 
Vivaldi with Microstripline feed
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Chosen antenna type from all 
the possible options
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Possible practical design of 
Vivaldis



Parbhu Patel 32

Embrace Tile
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Aluminium Radiator with microstrip feed



Parbhu Patel 35

Element pattern as a function of frequency
(for Embrace Vivaldi antennas)

E-Plane H-Plane
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Element pattern as a function of spacing

• Larger the spacing, smaller the allowed scanned region before the GL appears
• Scanned blindness appears just before the emergence of the GL
• Spacing not only restricts the scanned region but also narrows the element pattern
• before the analysis,  the basic design process must be understood

H plane element pattern for a centre element of a 7 x 9 element λ/2 dipole array
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Thank you


